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Alle sagten: „Das geht nicht.“
Dann kam einer, der wusste das nicht und hat’s gemacht.

Unbekannt



Kurzfassung

Gefangene Rydberg Ionen stellen einen neuen, vielversprechenden Ansatz in der Quantenin-
formationsverarbeitung dar, wurden jedoch bisher noch nicht experimentell erforscht. Die vor-
liegende Masterarbeit befasst sich mit den experimentellen Grundlagen zur Anregung von Stron-
tiumionen in den Rydbergzustand. Das Hauptaugenmerk liegt auf der Realisierung des Lasersys-
tems zur Rydberganregung, anhand eines zwei-Photonen-Übergangs, und der Charakterisierung
des erzeugten Laserlichts.

Einer der benötigten UV-Anregungslaser ist nicht handelsüblich erhältlich und wird da-
her über Summenfrequenzmischung (SFG) und anschließender Frequenzverdopplung (SHG)
erzeugt. Im SFG-Prozess werden ein 1551 nm und ein verstimmbarer 1000 nm Diodenlasers in
einem Lithiumniobat-Kristall gemischt um Laserlicht mit 607-619 nm zu erzeugen, welches
schließlich im SHG-Prozess zu 304-310 nm frequenzverdoppelt wird. Dank der verstimm-
baren Wellenlänge dieses Anregungslasers wird es möglich sein die Strontiumionen in Ryd-
bergzustände mit einer Hauptquantenzahl über n = 30 (bis hin zu zweifacher Ionisation) anzure-
gen.

Abstract

Trapped Rydberg ions represent a new, promising approach to quantum information processing
but have yet to be experimentally realized. The present master thesis treats the experimental basis
for the excitation of strontium ions into the Rydberg state. The main focus is the realization of
the laser system for the two-photon Rydberg excitation and the characterization of the generated
laser light.

One of the two UV excitation lasers is not commercially available and is therefore generated
by successive sum-frequency generation (SFG) and second-harmonic generation (SHG). In the
SFG process a 1551 nm diode laser and a tunable 1000 nm diode laser are mixed in a lithium
niobate crystal to generate 607-619 nm laser light, which is then frequency-doubled to 304-
310 nm in a SHG system. Based on the tunability of this excitation laser, it will be feasible to
excite trapped strontium ions into Rydberg states with principal quantum numbers above n = 30
(up to double ionization).
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Chapter 1

Introduction

Quantum information processing represents a successful and rapidly growing field in physics.
The aim is to develop quantum computers for simulating complicated quantum systems (e.g.
many-body systems), performing extensive calculations fast (e.g. factorization), and efficiently
searching large databases. In contrary to classical computers, which use macroscopic currents
switched by transistors, the bits of a quantum computer are formed by two-level quantum-
mechanical objects, so called “qubits”. Such two-level systems are for example represented by
the polarization of a photon, the spin state of an electron, or the electronic state of an atom/ion.
The advantage of a qubit is that it is not restricted to be in one state or the other (’0’ or ’1’) but it
can be in a superposition of both basis states simultaneously (|Ψ〉 = α |0〉+ β |1〉). This means
that a system of n qubits can be in a superposition of 2n different states, so it can store exponen-
tially more information than a classical system and perform 2n calculations simultaneously. In
1996, D. P. Di Vincenzo published the following five requirements of a quantum computer [1]:

1. A scalable physical system with well-defined qubits

2. Ability to initialize the qubit states efficiently

3. Long decoherence times, much longer than gate-operation times, and/or protocols which
are insensitive to decoherence caused by environment interaction (quantum error correc-
tion)

4. Universal set of quantum operations, for example consisting of: single-qubit rotations and
two qubit gates (entanglement)

5. Possibility to read out the qubit state by a strong measurement

Cooled, trapped ions are one of the most advanced systems currently being investigated for quan-
tum information processing. Their qubit basis states are represented by ground and metastable
states and they exhibit relatively long coherence times and an exceptional ability of quantum
control [2–5]. This makes them a useful system for quantum information processing. Neverthe-
less, the scalability criterion and the gate operation time still need to be improved1: One of the
largest quantum registers was produced in the research team of Rainer Blatt in Innsbruck [6],
where they realized entanglement of 14 calcium ions in a linear Paul trap. In these experiments

1Typical parameters [6] for trapped ions are a duration time of an entangling gate of around 50 µs and a single
qubit coherence time of 100 ms.
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entanglement operations use the common motional modes of an ion string as a phonon data bus
for information transfer. For this the motional sidebands have to be spectroscopically resolved,
which limits the gate operation time since the spectral width of the exciting laser pulse has to be
smaller than the distance between the motional modes. Moreover, the motional mode spectrum
becomes significantly larger with increasing number of involved particles and it gets more and
more difficult to address the individual modes.

An alternative, promising approach is the extension of low-level trapped ions to highly ex-
cited trapped ions - so called “Rydberg” ions. The outer valence electron of a Rydberg ion is
excited to states with large principal quantum number n such that the particle transforms into a
macroscopic-sized object with several hundred nanometres in diameter, dRyd ∼ n2 [7].

Figure 1.1: Size comparison. From left to right: ion, typical harmonic motional wave functions
in a linear Paul trap, Rydberg ion. The size of a Rydberg ion is around one order of magnitude
larger than the typical extension of the motional ground state wave function in a linear Paul trap
and around three orders of magnitude larger than the ground state ion itself.

The large orbital radius of the valence electron leads to a strong polarizability α ∼ n7 of
Rydberg ions. Therewith one expects strong Van der Waals interaction ∼ n11/r6 at large dis-
tances and strong dipole-dipole interaction ∼ n4/r3 at smaller distances. In 2008, a group of
researchers led by P. Zoller [8] explored the idea of fast Rydberg gates in an ion chain in de-
tail. They pointed out that Rydberg ions, which are aligned in a Wigner crystal, do not exhibit
permanent dipole moments. For typical trapping parameters [9] also the Van der Waals interac-
tion between the Rydberg ions is small compared to the linewidth of the Rydberg states and the
external trapping frequencies of the ions. Thus, P. Zoller and co-workers proposed to increase
the interaction strength of Rydberg ions by applying off-resonant microwave fields, coupling
the electronic Rydberg states |n′, p〉 and |n, s〉 (Fig. 1.2). This coupling results in an effective
dressed state

|s′〉 = |n, s〉 − ΩMW

2∆
|n′, p〉 ,

where the weak admixture of |n′, p〉 leads to a large, oscillating dipole moment on the |s′〉 state:
d ∼ ΩMW

∆ ea0n
2cos(wt) ≈ 3000 D (c.f. dipole moment from trapped ion motion: d ≈ 350 D).

This induces a strong dipole-dipole interaction between Rydberg ions. The microwave transition
frequency lies typically in the order of tens to hundreds of gigahertz and does not couple to the
external motion of the ions (lying in the megahertz regime).
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Figure 1.2: Scheme of the microwave dressing of ionic Rydberg states. An off-resonant mi-
crowave field couples |n, s〉 and |n′, p〉 Rydberg levels and generates an effective dressed state
|s′〉 with oscillating dipole moment.

A very important consequence of the strong interactions in Rydberg systems is the Rydberg-
blockade. This dipole-blockade acts within a certain “blockade radius”, preventing the excitation
of more than one atom into the Rydberg state: A Rydberg atom shifts the Rydberg energy
levels of neighboring atoms such that they are out of resonance with respect to the narrow2 and
primarily resonant excitation laser (Fig. 1.3). Therefore, the excitation of a second nearby atom
into the Rydberg state is blocked.

Figure 1.3: Energy level scheme illustrating the Rydberg blockade on a two-atom system. |g, g〉:
state with both atoms in a low-lying state, |g, r〉: one atom is excited to a Rydberg state, |r, r〉:
common state of two neighboring Rydberg atoms. The state |r, r〉 is shifted out of resonance to
the excitation laser due to the interaction between the Rydberg atoms. The atomic linewidth of
the |r, r〉 state results from the spontaneous decay Γ and is smaller than the interaction-induced
energy shift.

In 2000, Jaksch et al. [10] proposed fast quantum gates for neutral atoms, based on the Ryd-
berg blockade. Employing this principle with trapped Rydberg ions allows for quantum gates
independent from the external motional dynamics of the ions. The basic idea for a Rydberg-
blockade mediated two-qubit phase gate is depicted in Fig. 1.4:

2The linewidth of the Rydberg excitation laser has to be smaller than the interaction-induced and inter-atomic
distance dependent energy shift.
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(a) |0〉1 |0〉2 → −|0〉1 |0〉2 (b) |0〉1 |1〉2 → −|0〉1 |1〉2

(c) |1〉1 |0〉2 → −|1〉1 |0〉2 (d) |1〉1 |1〉2 → |1〉1 |1〉2

Figure 1.4: Rydberg-blockade mediated conditional phase gate on two atoms, realized by the
pulse sequence πcontrol → 2πtarget → πcontrol. As explained in the text below, the Rydberg
excitation of the control atom induces an energy shift B of the Rydberg level |Ry〉 for the target
atom such that its excitation is blocked.

Consider a two-atom system and a narrow laser, resonant only to a single-atom transition
from an upper ground state |0〉 to a Rydberg state |Ry〉. If the two-atom system is initially in
the |0〉 |0〉 state (case a) or |0〉 |1〉 state (case b) a π pulse on the control atom shifts the energy
of the double Rydberg state, such that the excitation laser is far off-resonant (in case (b) it is
anyway off-resonant) and is not able to excite the target atom into the Rydberg state |Ry〉. Thus,
a 2π pulse on the target atom leaves the system practically unaffected. A subsequent π pulse
on the first atom returns the system back to the initial state, except of a sign change in the wave
function. If the system is arranged in the |1〉 |0〉 state (case c), the laser cannot drive a transition
from the lower ground state |1〉 to the Rydberg state on the control atom since it is not resonant.
Therefore the Rydberg excitation of the target atom is not blocked and an applied 2π pulse
causes a π phase shift (sign change) to the wave function. Only case d, with both atoms being
in the lower ground state |1〉 |1〉 does not accumulate any phase because the off-resonant laser
can not drive any excitation. Summed up, the entire pulse-sequence corresponds to a controlled
phase gate (CZ). The Rydberg energy shift lies in the megahertz-regime and the decay rate of



5

a Rydberg state measures a few microseconds. Therefore, we can apply relatively high Rabi
frequencies and thus perform gate operations within nanoseconds or a few microseconds.

The ability to perform any unitary operation on a quantum computer requires a complete set
of universal gates. Such a set can be represented by a combination of single qubit rotations and
two-qubit controlled-NOT (CNOT) gates [11]. The first realizations of CNOT gates, based on
the Rydberg blockade, were demonstrated in [12] with neutral atoms. One standard approach
is to apply Hadamard rotations on the target atom before and after a controlled phase gate. The
entire pulse-sequence takes 7 µs and results in the so called H-CZ CNOT gate (Fig. 1.5).

Figure 1.5: Schematic H-CZ CNOT gate, realized with neutral atoms [12].

Using the Rydberg interaction for two-ion gates has several advantages: As we have seen
above, the strong long-range interactions allow dynamical processes (such as quantum gates) to
run on the nanosecond or low-microsecond time scale, which is much faster than the time scale
for external motional processes. Another advantage over other dipolar systems is that the Ryd-
berg interaction strengths can be controlled, and even turned on and off, by exciting the electron
to the corresponding Rydberg level or not. All these are convincing arguments to choose this
approach as an extension of cooled, trapped ions towards the long-term goal of a quantum com-
puter. Our group aims to trap and cool strontium ions and excite them into a Rydberg state in
order to experimentally investigate the behaviour and interaction properties of Rydberg ions and
analyze their suitability as a system for quantum simulation and quantum information process-
ing.

This thesis describes the laser system for the excitation of strontium ions into Rydberg states.
It is structured as follows: Chapter 2 summarizes a theoretical characterization of the wave func-
tions and lifetimes of the most relevant strontium energy levels as well as an estimation of the
required Rabi frequencies and laser linewidths. It also treats some nonlinear optical phenomena,
which are fundamental for our Rydberg excitation scheme. Chapter 3 introduces three technical
principles for the experimental realization of the theoretical ideas: periodically poled crystals
and the Sellmeier equation, the optimized focusing into the nonlinear crystal, and the ring res-
onator. Chapter 4 focuses on the experimental setup for the generation and stabilization of the
required Rydberg excitation laser light and discusses technical characteristics and simulations.
Finally, chapter 5 summarizes the main results and gives an outlook on future applications. The
appendices present two Mathematica programs, containing basic calculations for the laser sys-
tem setup.



Chapter 2

Theoretical background

2.1 Strontium energy levels

Strontium is an alkaline earth metal with electronic configuration [Kr]5s2, thus it has two valence
electrons. After single ionization, it has similar properties to the hydrogen atom, so it is easy to
theoretically describe its behaviour and manipulate its states.

Figure 2.1: Relevant energy levels of strontium and the corresponding laser system. The lowest
two levels shown belong to the neutral strontium atom. The ionization lasers (red arrows) excite
one valence electron to a metastable state above the ionization limit from which it is sponta-
neously emitted, leaving a strontium ion behind (autoionization). The green arrows denote the
lasers for trapping, cooling and state manipulation. Blue arrows represent the two UV lasers for
the planned excitation into a nS/D Rydberg state with quantum number n between 30 and 60.

6



2.1. Strontium energy levels 7

Fig. 2.1 shows the strontium energy levels which are relevant for our experiment. The
422 nm laser drives an almost closed dipole transition with rapid excitation and spontaneous
decay. Therefore, the 422 nm photon scattering rate is very high, making this transition suitable
for state detection and Doppler cooling. The ionic qubit is stored in the 5S1/2 ≡ |0〉 ground state
and the 4D5/2 ≡ |1〉 metastable state, which can be manipulated via 674 nm light. In order to
bring population quickly from |1〉 back to |0〉, i.e. state initiation, 1033 nm laser light artificially
shortens the lifetime of the 4D5/2 state by exciting population to the short-lived 5P3/2 state from
which it decays spontaneously to 5S1/2. Based on this, the 674 nm qubit laser and the 1033 nm
laser will also be used to perform sideband cooling. The 1092 nm laser light serves as repumper
in the cooling and state initialization processes.

The two blue arrows denote the UV lasers for the two excitation steps into the Rydberg state,
with 6P3/2 as an intermediate level. A detuning in the GHz-regime1 prevents populating the
6P3/2 state, from which spontaneous decay would reduce the Rydberg excitation efficiency. The
tunable wavelength between 305-310 nm allows for excitation to nS and nD states with principal
quantum numbers between n = 30− 60 in order to experimentally explore and study this entire
highly-excited region. The generation of the Rydberg excitation light is based on principles of
nonlinear optics (Sec. 2.2) and is described in detail in chapter 4. At the submission of this
thesis, the ion trap is under construction, as a result the laser system is yet to be directly tested.

The reason for choosing a two-photon instead of a single-photon excitation is the large en-
ergy gap between the upper qubit level and Rydberg levels. This corresponds to a laser wave-
length of 135 nm which is absorbed in air. Besides the difficulties in generating such short
wavelength lasers, handling such lasers is also technically demanding, since the setup has to
be held in vacuum [14]. One advantage of strontium is the intermediate 6P3/2 level, which al-
lows the excitation to be split into two steps. Moreover, wavelengths similar to the ones we
require have been successfully produced in other experiments [15, 16]. Although Rydberg se-
ries in strontium ions were already investigated [17], we are working on the experimental setup
towards the first realization of trapped Rydberg ions.

2.1.1 Wave functions and lifetimes

The following contains a short draft of the basic formulas and mathematical relations [14] for
the theoretical characterization of the Sr+ energy levels. In 2011, Weibin Li2 used this theory
to derive energies, wave functions, and lifetimes for the strontium ion. The idea is to reduce
the many-body problem of the valence electron, inner electrons, and nucleus to a two-body
problem, where the nucleus and the inner electrons are approximated as one doubly ionized
core with a spherically symmetric potential. The valence electron is confined in this potential
and the external ion-trapping potential. The dynamics of the trapped electron-ion system can be
approximated by the two-body Hamiltonian, treated in the center-of-mass-frame

1The population of the intermediate level is negligible [13] if the detuning |∆| �
√
|Ω1(t)|2 + |Ω2(t)|2

and |∆| � Γinterm, with the Rydberg transition Rabi frequencies Ω1,2 (given by Eq. 2.3) and the linewidth of the
intermediate level Γinterm.

2At this time postdoctoral researcher in the Theoretical Quantum physics department at the School of Physics
and Astronomy, University of Nottingham.
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H =
P2

I

2M
+ eΦ(R, t)

+
p2
e

2me
+ V (|r|) + Vl,s(r)− eΦ(r, t)

− 2e [αcos(Ωt)(Xx− Y y)− β(Xx+ Y y − 2Zz)]

The first line represents the Hamiltonian for the center of mass (CM) motion in the trapping
potential Φ(R, t), the second line describes the dynamics of the electron in the field of the doubly
charged ion core and the superimposed trapping potential. The third line gives the electron-
ion coupling due to their common motion in the trap. This results in an additional potential
for the ion, which can be neglected for low-lying states n < 10. The interaction V (|r|) of
the valence electron with the inner shell electrons and the nucleus can be approximated by an
angular-momentum-dependent model potential [18]

Vl(r) = −1

r

[
2 + (Z − 2)e−αl,1r + αl,2re

−αl,3r
]
− αc,p

2r4

[
1− e−(r/rl)

6
]

,

with the nuclear charge Z and the experimental dipole polarizability of the doubly charged ion
αc,p = 7.5. Tab. 2.1 lists the parameters αl,i and rl, which were empirically determined by
fitting the theoretical formulas, derived from the model potential, to known energy levels:

l αl,1 αl,2 αl,3 rl

0 3.4187 4.7332 1.5915 1.7965
1 3.3235 2.2539 1.5712 1.3960
2 3.2533 3.2330 1.5996 1.6820
≥3 5.3540 7.9517 5.6624 1.0057

Table 2.1: Empirically determined parameters for the perturbing potential of a doubly ionized
strontium core [18].

The Hamiltonian for the spin-orbit interaction is then described by

V
(so)
l,s (r) =

α2
lsl · s
2r

dVl(r)

dr

[
1−

α2
ls

2
Vl(r)

]−2

,

with the fine structure constant αls ≈ 1/137, the orbital angular momentum l, and the spin
operator of the electron s. This model potential has spherical symmetry and therefore conserves
the total angular momentum j=l+s. This permits the electronic wave function to be expanded
as in [19]

|ψljmj 〉 = Rl,j(r) |l, j,mj〉 (2.1)

with |l, j,mj〉 =
∑

ms=±1/2

〈l, 1/2,ml,ms|j,mj〉 |l,ml〉 |s, sz〉 .

Here, Rl,j(r) is the radial wave function and |l, j,mj〉 represents the two-component spinor
basis vector, with mj (ml) as the projection of j (l) onto the quantization axis. The expression
〈l, 1/2,ml,mj −ml|j,mj〉 denotes the Clebsch-Gordan coefficients.
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The low-lying electronic energies, calculated by Weibin Li with this model potential, are in
good agreement with experimental values3. Therefore, the obtained electronic wave functions
form a solid basis for the upcoming theoretical description and analysis of Rydberg states. A
selection of the most significant electronic wave functions for us is shown in Fig. 2.2.

(a) 4D5/2 (b) 6P3/2

(c) 30S1/2 (d) 59S1/2

Figure 2.2: Theoretical electronic radial wave functions for the strontium ion as calculated by
Weibin Li, University of Nottingham. The most relevant levels in the Rydberg excitation process
are shown: 4D5/2, 6P3/2, and two Rydberg levels 30S1/2, and 59S1/2.

For the low-level states (a),(b) in Fig. 2.2 the probability density of the electron position is
high near the ion core (small values r). However, for the Rydberg states (c),(d) the density at
small r is much lower (note the different amplitude scaling) - it is spread over a larger radial
distance from the core (Fig. 2.3). The expectation values for the position of the valence electron,
〈r̂〉, represent this difference:

〈r̂〉 = 〈Ψl,j,mj |r̂|Ψl,j,mj 〉 =

∞∫
0

R∗l,j Rl,j r
2 dr ≈

{
3 a.u. for 4D5/2 ,

559 a.u. for 30S1/2 .

Here, |Ψl,j,mj 〉 and Rj,l are the full and the radial electronic wave functions (as in Eq. (2.1)),
respectively, and r̂ is the radial position operator.

3e.g. level energies in a.u. of 4D5/2: Experiment (NIST): -0.337752 / Weibin Li: -0.3376959 / other theory [20]:
-0.337939
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(a) 4D5/2 (b) 30S1/2

Figure 2.3: Theoretical electronic radial wave functions for the strontium ion. Graphs (a) and (d)
of Fig. 2.2 are shown over a larger distance range. For the low-lying 4D5/2 level the probability
density of the electron position is large around the ionic core, whereas for the Rydberg level
30S1/2 it is distributed over a large range.

The lifetime τ of a state i is given by τ = 1/Atoti , where the total decay rate Atoti is the sum
over all possible decay channels, respecting the selection rules ∆l = ±1 and ∆m = 0,±1 [21]:

Atoti =
e2w3

i-f

3ε0~c3π
· |〈i|r̂|f〉|2 ·

Max[li, lf ]

2li + 1
,

where wi-f is the frequency of the spontaneously emitted photon at the transition from the initial
state i to a lower level f , for which |li − lf | = 1 must be fulfilled. Note that the last term
contains the angular part and accounts for the selection rule ∆m = 0,±1, whereas the dipole
matrix element 〈i|e · r̂|f〉 is restricted to its radial part. Fig. 2.4 shows theoretically calculated
lifetimes for S, D, and P Rydberg states with n = 34 − 61. The lifetimes τ are proportional to
n3, with n as the principal quantum number:

State τ (n) in µs State τ (n) in µs

S1/2 2.9532 · 10−5 n3.16957 P1/2 9.01022 · 10−4 n3.08672

D3/2 4.1862 · 10−5 n3.08935 P3/2 1.03304 · 10−3 n3.09492

D5/2 4.3476 · 10−5 n3.08943

Table 2.2: Lifetime dependency on the principal quantum number n for S, D, and P Rydberg
states with n = 34− 61. Calculation by Weibin Li.

One notices that the P states live longer, making them potentially more useful for obtaining
coherent Rydberg-Rydberg interactions. However, our planned two-photon excitation scheme
employs the intermediate 6P3/2 level, from which only S1/2, D3/2, and D5/2 are accessible.
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Figure 2.4: Lifetimes for S,D, and P Rydberg states, with principal quantum numbers n between
34 and 61. The P states live more than one order of magnitude (≈ factor of 20) longer. The
lifetimes are proportional to n3, where the full fitting curves are specified in Tab. 2.2. Calculation
by Weibin Li .

2.1.2 Rabi frequencies and linewidths

The Rabi frequency Ω of an electronic transition is given by the scalar product of the driving
electric field strength E0 and the dipole matrix element of the transition d̂if = 〈i| −e r̂ |f〉. Here,
|i〉 and |f〉 correspond to the calculated electronic wave functions of Eq. (2.1) for the initial and
the final level, respectively. These wave functions generally depend on the quantum numbers
n, j,mj . Therefore, the dipole matrix element, and thus the Rabi frequency, varies with the
respective initial and final states, accounting for the different transition probabilities.

Ω =
|d̂if ·E0|

~
(2.2)

For the two-step excitation into Rydberg levels we get:

step 1: 4D5/2 → 6P3/2 : λ = 243 nm , Ω1 = 2π 230 MHz

step 2:

{
6P3/2 → 30D5/2 : λ = 309 nm , Ω2 = 2π 117 MHz
6P3/2 → 59D3/2 : λ = 305 nm , Ω2 = 2π 13 MHz

(2.3)

where we assume a laser power of 5 mW and a beam waist of 5 µm, which corresponds to
focusing each laser down to a single ion4. Note that we selected the two radial target states
with the lowest and highest wave function overlaps with the intermediate 6P3/2 state. This way
we know over which range the Rabi frequencies are spread and we can estimate the critical
values for other parameters, such as laser linewidths. Our two-photon excitation scheme can be

4The typical ion-ion distance in a linear Paul trap measures 5-10 µm. A beam waist of 5 µm allows individual
ion addressing when the laser beam is perpendicular to the ion string. Considering the numerical aperture of the
endcap electrodes in our trap, it is also possible to send the laser beam through the holes in the endcaps and to focus
the laser to a spot size of 5 µm. This way the laser light propagates along the z-axis of the trap to address all ions
simultaneously.
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described by a three-level system with resonant two-photon excitation, where the driving lasers
to and from the intermediate level are both detuned by the same value ∆ (Fig. 2.5).

Figure 2.5: Our planned two-photon Rydberg excitation scheme (right) corresponds to a three-
level system with two-photon resonance (left). The electron is excited from 4D5/2 ≡ |g1〉 to a
S/D Rydberg level ≡ |g2〉 without populating the intermediate state |e〉 ≡ 6P3/2. ∆: detuning,
Ωi: Rabi frequencies, λi: wavelengths.

The Hamiltonian for such a system in the basis {|g1〉 , |g2〉 , |e〉} is given by [13]

H(t) =
~
2

 0 0 Ω1(t)
0 0 Ω2(t)

Ω∗1(t) Ω∗2(t) 2∆

 .

Under the conditions that |∆| �
√
|Ω1(t)|2 + |Ω2(t)|2 and |∆| � Γintermediate the population of

the intermediate state is negligible (adiabatic elimination) and the system evolves to an effective
two-level system with the Hamiltonian [13]

Heff(t) =
~
2

(
− |Ω1(t)|2

2∆ −Ω1(t)Ω∗2(t)
2∆

−Ω∗1(t)Ω2(t)
2∆ − |Ω2(t)|2

2∆

)
.

The effective Rabi frequency Ωeff of our Rydberg excitation scheme is now given by the off-
diagonal elements of the effective Hamiltonian

Ωeff = −Ω1Ω2

2∆
, (2.4)

while the diagonal elements lead to a light shift of the two levels which can be compensated by
a respective two-level detuning. With a detuning of ∆ = 2π 1 GHz, and Ω1 and Ω2 specified
above, Ωeff lies between 2π 1.5 MHz and 2π 13 MHz.
The following conditions must be fulfilled to drive the Rydberg transitions coherently:

1. Ωeff � Γ: The effective Rabi frequency has to be much larger than the linewidth of the
addressed energy level Γ = 1/τ . This way excitation and de-excitation can succeed before
a spontaneous emission occurs. This condition is fulfilled for the S/D Rydberg levels of
interest, which have lifetimes τ in the order of microseconds.

2. ∆ν � Ωeff: The linewidth ∆ν of the transition driving lasers has to be much smaller than
the Rabi frequency so that the phases of excitation and de-excitation coincide. Therefore,
we want to achieve laser linewidths of ∆ν . 100 kHz.
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This value for ∆ν also allows individual level addressing: the energy difference between neigh-
bouring levels is much bigger than the linewidths of the states5. So, with a linewidth of
∆ν ∼ 100 kHz, Rydberg levels between n = 30− 60 should be individually addressable.

2.2 Nonlinear optics

A weak light field interacting with a material system induces a polarization P (t) = χ(1)E(t),
which depends linearly upon the electric field strength E(t). The proportionality factor χ(1) is
known as the linear susceptibility and describes phenomena in linear optics. Nonlinear optics,
however, describes phenomena that occur when sufficiently intense light (typically laser light)
interacts with an optical medium. The expression “nonlinear” refers to the nonlinear dependency
of the material response upon the strength of the applied optical field [22]. In contrary to the
linear case, the polarization also depends on quadratic and higher order terms of E(t). So P (t)
can be expressed as a power series in the electrical field strength:

P (t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...

≡ P (1)(t) + P (2)(t) + P (3)(t) + ... ,
(2.5)

where χ(2) and χ(3) denote the second- and third-order nonlinear optical susceptibilities,
respectively. In the most general case, the fields P (t) and E(t) are represented by vectors and
the susceptibilities are tensors of the correspondent rank. Nonlinear optical interactions of the
second order (described by χ(2)) can only occur in non centrosymmetric crystals (e.g. barium
borate (BBO), lithium triborate (LBO), lithium niobate (LN)). Liquids, gases, amorphous solids
and many crystals show inversion symmetry, for which χ(2) vanishes. Each atom in the material
sample, which feels an incident field, develops an oscillating dipole moment. Every oscillating
dipole is a source for new electromagnetic field components, even with different frequencies in
the nonlinear case (as discussed below, e.g. in Eq. (2.6) and (2.7)). The phase velocity6 of an
electromagnetic wave depends on the refractive index of the traversed medium, which changes
with frequency. Therefore, the velocity of the incident, polarizing wave can differ from the in-
ternal radiated field components. This causes dephasing of the single newly generated waves
radiated off the individual dipoles and results in alternating areas of constructive and destruc-
tive interference along the entire propagation length. As explained in subsection 2.2.2, a proper
relative phasing of the single dipoles can be achieved via special techniques, so called “phase
matching” methods.

Nonlinear optical processes can be used to convert laser light of commercially obtainable
frequencies into special and not directly available frequencies. This method will be used for
producing the UV laser light for the Rydberg excitation (243 nm and 304-310 nm), specifically
two second-order nonlinear effects are employed; Second-Harmonic Generation (SHG) and the
Sum-Frequency Generation (SFG), both described in the following subsection.

5Example of one of the smallest energy level differences 60D5/2 ↔ 60D3/2: Energy difference
∆E = h · 77 MHz, linewidth of the 60D5/2 τ = 13.5 µs ⇒ Γ = 73.8 kHz.

6The phase or propagation velocity is the speed at which the phase of a wave propagates through space. In
contrary, the group velocity is the speed of the wave-packet propagation, carrying the information.
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2.2.1 Second-harmonic generation and sum-frequency generation

As explained in 2.1, for the two Rydberg excitation steps special UV laser sources are required.
243 nm light is obtained by frequency quadrupling (two successive SHGs) of a 972 nm diode
laser. 607-619 nm light is generated by a sum-frequency process with 1551 nm and tunable
1000 nm light and then sent through another frequency doubling unit, in order to produce 304-
310 nm. The principles behind this nonlinear effects are described in the following.

Figure 2.6: The schematics (a) and (c) show the interaction geometry of second-harmonic gen-
eration and sum-frequency generation, respectively, illustrating the generation of new frequency
components in the radiated field. (b) and (d) are energy-level diagrams which describe the SHG
and SFG process. Two photons are annihilated while one photon with doubled (respectively
summed) frequency is produced.

In second-harmonic generation a laser beam with frequency w is incident upon a nonlinear
crystal (for which χ(2) is non-zero). Since the electric field strength is given as
E(t) = E0 · e−iwt + c.c. the created second-order nonlinear polarization can be written as

P (2)(t) = χ(2)E2(t) = 2χ(2)E0E
∗
0 +

(
χ(2)E2

0 · e−2iwt + c.c.
)

. (2.6)

The polarization has one component at zero frequency7 and one at frequency 2w. The latter one
leads to radiation at the so called “second-harmonic frequency” 2w. To visualize this process
one can consider it as energy exchange between different frequency components of the field.
Part (a) and (b) of Fig. 2.6 demonstrate this concept where a laser field of frequency w is con-
verted to a field with components w and 2w (we can neglect the low radiation intensity of higher
order terms). In other words: two photons of frequency w are annihilated and at the same time
a photon of frequency 2w is created.

In the case of sum-frequency generation the incident optical field consists of two different
frequency components and can be expressed as E(t) = E1 · e−iw1t + E2 · e−iw2t + c.c.. Sub-

7The contribution at zero frequency does not lead to electromagnetic radiation but leads to “optical rectification”:
a static electric field appears in the nonlinear crystal.
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stituting this into Eq. (2.5), the second-order contribution to the nonlinear polarization is given
by

P (2)(t) =χ(2)E2(t) = χ(2)
[
E2

1 · e−2iw1t + E2
2 · e−2iw2t + 2E1E2 · e−i(w1+w2)t

+ 2E1E
∗
2 · e−i(w1−w2)t + c.c.

]
+ 2χ(2) [E1E

∗
1 + E2E

∗
2 ] .

(2.7)

This formula has contributions at zero, double-, sum- and difference-frequencies, each of which
representing a different nonlinear optical process: optical rectification (zero freq.), second-
harmonic generation (doubled frequencies 2w1 and 2w2), sum-frequency generation (w1 + w2)
and difference-frequency generation (w1−w2 and w2−w1). Nevertheless, in practice only one
of the possible frequency components is produced at a significant radiation intensity. This is due
to the fact that usually only one frequency component satisfies the phase matching condition
required for efficient generation of an electromagnetic signal. By properly adjusting some exter-
nal conditions (see subsection 2.2.2 for details) one can choose the process which will be phase
matched and the corresponding frequency component will then be radiated. The phase matching
condition is related to momentum conservation and is written as ~k3 = ~k1 +~k2 (for the exam-
ple of SFG). Additionally, energy conservation must be fulfilled: ~w3 = ~w1 + ~w2. Diagrams
(c) and (d) in Fig. 2.6 show the interaction scheme and a virtual energy-level diagram of SFG. It
becomes clear that second-harmonic generation corresponds to a special case of sum-frequency
generation with w1 = w2 = w.

2.2.2 Coupled wave equations and phase matching

By describing the nonlinear interaction with Maxwell’s equations one can theoretically examine
how the nonlinear polarization develops and how the different frequency components of the
electromagnetic field interact with each other. This also explains the development of domains of
constructive and destructive interference and the principle of phase matching. For simplicity, the
following formulas are given in the Gaussian CGS-system8. At first, the nonlinear polarization
P is added as a source term in Maxwell’s equations [22, 23]:

∇× E = −1

c

∂B
∂t

(2.8)

∇× B =
1

c

∂D
∂t

(2.9)

with D = εE + 4πP (2.10)

Here, it is assumed that the material is non-magnetic (B = H) and that no free charges or free
currents appear (ρ = 0, J = 0). The linear polarization is included in the dielectric tensor9 ε
and P denotes the nonlinear polarization only. Taking the curl of both sides in Eq. (2.8) and
combining the three equations (2.8), (2.9) and (2.10) one obtains

∇×∇× E = − ε

c2

∂2E
∂t2
− 4π

c2

∂2P
∂t2

.

8Electric field strength: ECGS =
√

4πε0 ·ESI , electric displacement field: DCGS =
√

4π/ε0 ·DSI , magnetic
field strength: BCGS =

√
4π/µ0 ·BSI , magnetizing field strength: HCGS =

√
4πµ0 ·HSI , c2 = 1

ε0µ0
9For simplicity it is assumed to have an isotropic material for which ε reduces to a scalar.
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This is the basic wave equation in nonlinear optics. By substituting ∇×∇× E = ∇ (∇ · E)−
∇2E and neglecting10 the first term on the right-hand side, the equation transforms to

∇2E =
ε

c2

∂2E
∂t2

+
4π

c2

∂2P
∂t2

. (2.11)

We want to use this equation on the example of sum-frequency generation, where three inter-
acting monochromatic continuous-waves travel through a nonlinear optical medium. Moreover,
we assume that the waves propagate in z direction, thus we restrict the problem to only one
dimension. For this case the applied fields are given by

E1(z, t) = A1e
i(k1z−w1t)

E2(z, t) = A2e
i(k2z−w2t)

E3(z, t) = A3e
i(k3z−w3t) (2.12)

with similar equations for the complex conjugates. The field amplitudes Ai are slowly varying
functions in z and the three frequencies are connected by w3 = w1 + w2. According to [22]
(Sec. 1.5) the determining polarization term P3 can be written as

P3(z, t) = 4dA1A2e
i[(k1+k2)z−w3t] , (2.13)

where the coupling coefficient d arises from the effective nonlinear susceptibility. We insert
Eq. (2.12) and Eq. (2.13) into the wave equation (2.11), to see how the field component E3 with
sum-frequency w3 develops.

left side:
∂2E3

∂z2
→
(
d2A3

dz2
+ 2ik3

dA3

dz
− k2

3A3

)
ei(k3z−w3t)

right side:
ε

c2

∂2E3

∂t2
+

4π

c2

∂2P3

∂t2
→− εw2

3

c2
A3e

i(k3z−w3t) − 16πdw2
3

c2
A1A2e

i[(k1+k2)z−w3t]

Using ε(w3) = n2
3 and the dispersion relation k3 = n3w3/c the third term of the left side cancels

with the first term of the right side. Additionally, e−iw3t cancels on both sides and one gets

d2A3

dz2
+ 2ik3

dA3

dz
= −16πdw2

3

c2
A1A2e

i(k1+k2−k3)z .

If the slowly-varying amplitude approximation10 is applied again, d
2A3
dz2 can be neglected. With

the so called wave vector mismatch ∆k = k1 + k2 − k3 one finally obtains

dA3

dz
=

8πidw2
3

k3c2
A1A2e

i∆kz . (2.14)

Eq. (2.14) shows the coupling between the three appearing waves w1, w2, w3 and in particular
how the amplitude of w3 depends on the other two. Thus, it is called a coupled-amplitude
equation. Analogously one can derive equivalent equations for the other two fields:

dA1

dz
=

8πidw2
1

k1c2
A3A

∗
2e
−i∆kz

dA2

dz
=

8πidw2
2

k2c2
A3A

∗
1e
−i∆kz

10Valid for example if the incident field E has the form of a transverse, infinite plane wave (for which ∇E = 0),
or more generally in the slowly varying amplitude approximation, if

∣∣∣ d2Edz2 ∣∣∣� ∣∣ki dEdz ∣∣.
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Assuming that the conversion of the incoming fields into the generated sum-frequency field
is small, the amplitudes A1 and A2 are constant. In this case, the three coupled-amplitude
equations reduce to one which is quite easy to integrate along the entire propagation path (for
example, a crystal with length L). So the amplitude of the field E3 at the end of the crystal is
given by

A3(L) =
8πidw2

3

k3c2
A1A2

L∫
0

ei∆kzdz =
8πidw2

3

k3c2
A1A2

(
ei∆kL − 1

i∆k

)
. (2.15)

The intensity of the sum-frequency field is given by the power per unit area (time averaged
Poynting vector) which is defined by [22]

I3 =
n3c

2π
|A3|2 (2.16)

=
n332πd2w4

3|A1|2|A2|2

k2
3c

3

∣∣∣∣ei∆kL − 1

∆k

∣∣∣∣2 .

Finally, we substitute
∣∣∣ ei∆kL−1

∆k

∣∣∣2 = L2sinc2(∆kL2 ) , k3 = n3w3
c , w3 = 2πc

λ3
and express |A1|2

and |A2|2 in terms of their intensities according to Eq. (2.16):

(11)I3 =
512π5d2I1I2

n1n2n3cλ2
3

L2sinc2

(
∆kL

2

)
(2.17)

At this point, an intuitive explanation for this signal shape should be considered: In Eq. (2.15)
one integrates over all wave-contributions (of the form eikz) arising along the propagation path z
of the polarizing wave. This corresponds to a Fourier transformation of a step function between
0 and L which results in the sinc-function of Eq. (2.17).

The sinc-factor depends on the wave vector mismatch and the length of the nonlinear mate-
rial. So the efficiency of sum-frequency generation generally decreases with increasing |∆k|L,
with some additional oscillations (see Fig. 2.7). This is because when L is bigger than π/∆k
the generated electromagnetic wave runs out of phase with its driving polarization wave, they
interfere destructively and the output power decreases. At the coherence length Lc = 2π/∆k
the intensity of the generated field vanishes completely.

11Note that the calculation was performed in the CGS-system, which means that conversion factors have to be
taken into account, to get the right physical values. Nevertheless, this equation is only a theoretical simplification,
in order to see the dependency of the output power on the incident light intensities and the phase mismatch. A
more realistic, physical formula is given by Eq. (3.3), which additionally contains contributions of absorption, phase
mismatch, focusing parameters, and double refraction.
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Figure 2.7: Efficiency of sum-frequency generation as a function of the wave vector mismatch.

In summary one distinguishes between two cases:

1. If ∆k 6= 0 the output intensity varies with the length of the crystal in a (sinc)2 fashion.

2. The condition ∆k = 0 or k3 = k1 + k2 is known as perfect phase matching. In this
case the individual atomic dipoles are properly phased so that the newly generated waves
interfere constructively and add together coherently. Therefore, frequency conversion is
maximally efficient. From Eq. (2.17) the intensity of the sum-frequency wave is then
proportional to the power of the input intensities and to the square of the crystal length.

Phase matching considerations

The condition of phase matching between the polarizing and generated waves can be reached
by several approaches. The following pages present two methods by which we achieve phase
matching [23, 24]: a technique to obtain true phase matching and a quasi-phase matching
method. These approaches are explained on the example of second-harmonic generation, which
involves waves of only two different frequencies and therefore simplifies the description.

The technique of angle phase matching was published in 1962 by Giordmaine [25] and,
independently, by Terhune and co-workers [26]. The wave vector mismatch results from the dif-
ference between the velocities of the fundamental wave c1(w) and the second-harmonic c2(2w).
This difference is caused by the unequal frequencies and therefore differing refractive indices of
the two waves (ci = cvac/ni). The basic idea of angle phase matching is to match the refractive
indices by employing the birefringence of a uniaxial crystal. Such a crystal is defined by two
refractive indices, the ordinary no and the extraordinary ne. Let us assume that the electric field
of our incident fundamental beam w is polarized perpendicular to the optical axis of the crystal
and forms the so called ordinary ray, whose refractive index no(w) is independent of the angle
of incidence. The generated second-harmonic 2w is then polarized parallel12 to the optical axis

12A polarizing electric field of the form Ei = (Exi , E
y
i , 0) generates a field perpendicular to it Ef = (0, 0, Ezf ),

due to the tensor properties of the second-order susceptibility χ(2).
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and forms the extraordinary ray for which the index n2w
e (θ) changes as function of the angle

of incidence θ with respect to the optical axis (Eq. (2.18)). The change proceeds in form of an
elliptic function between the value of the ordinary index no(2w) and the extraordinary index
ne(2w). Consequently, one will choose13 the angle in such a way that the indices of the fun-
damental and the second-harmonic wave are matched n2w

e (θ) ≡ no(w) and therefore the phase
matching condition is fulfilled (Fig. 2.8).

n2w
e (θ) =

ne(2w) · no(2w)

[(no(2w))2 · sin2(θ) + (ne(2w))2 · cos2(θ)]1/2
≡ no(w) (2.18)

(a) (b)

Figure 2.8: (a) Dependence of ordinary and extraordinary indices on the angle of incidence θ for
a KDP crystal. Since the crystal is uniaxial birefringent the function shows rotation symmetry
around the optical axis. The red circle denotes the angle-independent, ordinary index of the fun-
damental no(w), the blue ellipse shows the extraordinary index of the second-harmonic n2w

e (θ),
which is dependent on the angle of incidence. At a certain angle θ the two indices are equal. (b)
Dispersion in the negative uniaxial KDP [27, 28]. The ordinary index is always larger than the
extraordinary which means that angle phase matching is possible only if the fundamental waves
propagate as ordinary rays.

Depending on the type of uniaxial crystal the fundamental beam has to be applied either as
ordinary or as extraordinary ray: for negative uniaxial crystals (Fig. 2.8(b)) the ordinary index
is larger than the extraordinary index no > ne, for which reason14 one chooses the fundamental
wave propagating as ordinary ray (electric field polarized perpendicular to the optical axis). For
positive uniaxial crystals it is the opposite and one uses an extraordinary fundamental. This type
of phase matching is called type I phase matching. In type II phase matching the fundamental
wave is in a superposition of horizontal and vertical polarization. The second-harmonic is gen-
erated by mixing the ordinary and the extraordinary component of the fundamental beam.

13Example with KDP (potassium dihydrogen phosphate) as negative, uniaxial crystal, for a fundamental beam of
λf = 610 nm and a second-harmonic of λSH = 305 nm: According to [27] the refractive indices are no(w) =
1.5084 , no(2w) = 1.54345 , ne(2w) = 1.49629. With these values Eq. (2.18) solves for θ ≈ 59◦.

14From the example in footnote13, i.e. for normal dispersion where n(2w) > n(w), one sees that only in this
case the target index no(w) lies within the given index-range for n2w

e (θ): [ne(2w)− no(2w)].
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Quasi-phase matching is another approach to avoid the dephasing of the polarizing and
generated waves. Eq. (2.17) shows that the intensity of the generated field reaches its maximum
at the so called coherence length Lc = π/∆k from where it starts to decrease until it returns
to zero at L = 2Lc. If the phase of the second-harmonic is changed by 180◦ at exactly the
point where destructive interference starts, the phase mismatch can be partially compensated
(therefore, QUASI-phase matching): the intensity generated after one coherence length of the
quasi-phase matched crystal is smaller, by a factor15 4/π2, than the intensity from a perfectly
phase matched crystal of the same length. One technique to realize this phase jump is to cut
plates of the crystal with a thickness of one coherence length and stick them together so that
every second plate is turned over (the rotation axis corresponds to the optical axis). This causes
a change of sign of the nonlinear susceptibility and therefore a 180◦ phase change for the po-
larization wave. Fig. 2.9(a) illustrates this principle. The problem is that it can be very difficult
to cut such thin plates from a crystal (the thickness is down to 5 µm). Another way to obtain
periodically inverted crystals is by growing semiconductor layers epitaxially one on the other.
Nevertheless, in the most commonly used technique today a static electric field is applied to
ferroelectric crystals to induce a permanent electric polarization. A periodically poled field gen-
erates a corresponding poled crystal. In the sense of phase matching the periodicity, with period
length Λ = 2Lc, acts as an additional k-vector kΛ = 2π/Λ which sets the wave vector mismatch
∆k artificially to zero:

∆k ≡ 0⇔ k3 = k1 + k2 + kΛ . (2.19)

(a) (b)

Figure 2.9: (a) Principle of quasi-phase matching with a periodically poled crystal (c.f [29]).
The electric field component of the fundamental wave (blue sine) propagates unaffected through
the material, while the induced polarization wave of the second harmonic (red curve) changes
by 180◦ after every multiple of the coherence length Lc. Thus the newly generated electric
rays of the single domains interfere constructively. (b) SFG output signal for the cases of:
no-phase matching, quasi-phase matching and perfect phase matching (c.f [30]). For perfect
phase matching the signal would be proportional to the square of the crystal length. Instead of
decreasing after one coherence length the signal in the quasi-phase matched case rises further
and sets itself apart from the signal in a non-phase matched case which drops to zero after twice
the coherence length.

15Regarding Eq. (2.17): I3 ∝ sinc2
(

∆kL
2

)
=
(

2
π

)2 for L = π/∆k.
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The advantage of quasi-phase matching over angle phase matching is that it can also be used with
isotropic crystals. Besides, there is another problem in birefringent crystals: the direction of an
extraordinary ray (which corresponds to the direction of the poynting vector) is only parallel to
its wave vector (normal to the wave fronts), if the angle of incidence θ = 0◦ or 90◦. This means
that in a phase-matched case, with an angle of incidence 0◦ < θ < 90◦, the ordinary and the
extraordinary beam diverge with increasing propagation path (walk-off ) and thus do not overlap
for the entire crystal length. Only the projection onto the polarizing electric field component ac-
counts for the generation of the second-harmonic. So the output signal is not proportional to the
square, but rather to a lower power of the crystal length. For quasi-phase matching, however, the
angle θ can be chosen to be θ = 0◦ or 90◦ such that no walk-off occurs. An additional advantage
of quasi-phase matching is that the orientation of the crystal, with respect to the incident waves,
can often be chosen such that the χ(2) is largest.

In the QuaSIRIO-project we make use of both methods discussed here. For the SHG angle-
phase matching is employed, with lithium triobate (LBO) or barium borate (BBO) as the non-
linear crystals. For SFG we want to be able to tune the generated wavelength within several
nanometres. For this reason a Periodically Poled Lithium Niobate (PPLN) crystal with 5 paths
of different periodicities is used. By choosing a suitable path and the corresponding temperature,
the entire range of required wavelengths can be achieved by phase matching (see Sec. 3.1).



Chapter 3

Technical principles

3.1 PPLN crystal and the Sellmeier equation

Quasi-phase matching adds an additional term to the equation of momentum conservation due
to periodical poling of the nonlinear crystal. This poling, with period length Λ, adds an artificial
k-vector kΛ = 2π

Λ so that: ∆k ≡ 0⇔ k3 = k1 + k2 + kΛ. This equation is equivalent to

ne(λ3, T )

λ3
=
ne(λ1, T )

λ1
+
ne(λ2, T )

λ2
+

1

Λ
, (3.1)

where ne are the refractive indices for extraordinary polarized waves, T is the temperature of
the nonlinear crystal, and λ1/2/3 the wavelength of the respective propagating beam (here for
example: λ1 = 1000 nm, λ2 = 1551 nm, λ3 = 608 nm). The Sellmeier equation describes the
dependence of the refractive index on the temperature of the medium and on the wavelength of
the traversing beam [31]:

n2
e(λ, f(T )) = a1 + b1 · f +

a2 + b2 · f
λ2 − (a3 + b3 · f)2 +

a4 + b4 · f
λ2 − a2

5

− a6λ
2 . (3.2)

The temperature T is included in the parameter f = (T − T0) (T + T0 + 2 · 273.16) with the
reference temperature T0 = 24.5 ◦C. The coefficients ai and bi account for different contribu-
tions [31–33] to the refractive index from: plasmons and poles in the UV and IR, thermal effects,
multiphonon absorption, and optical anisotropies. Tab. 3.1 lists the Sellmeier coefficients for the
nonlinear crystal used in our setup. Inserting (3.2) into (3.1) results in an extensive equation,
describing the relation between temperature, poling period of the crystal, and wavelengths of the
respective laser beams. This formula can be visualized by a graph as in Fig. 3.3.

a1 5.756 a6 1.32 · 10−2

a2 0.0983 b1 2.860 · 10−6

a3 0.2020 b2 4.700 · 10−8

a4 189.32 b3 6.113 · 10−8

a5 12.52 b4 1.516 · 10−4

Table 3.1: Sellmeier coefficients for 5% MgO-doped congruent LiNbO3, according to Eq. (3.2)
as given in [31].

22
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Figure 3.1: Extraordinary refractive index curve for 5% MgO doped congruent LiNbO3 at room
temperature, according to the Sellmeier coefficients given in Tab. 3.1. (c.f [31])

The nonlinear crystal in our setup is a 4 cm long, 0.5 mm thick, magnesium-doped congruent
lithium niobate crystal (see Fig. 3.2), with five parallel gratings of different poling periodicities
between 10.40 µm and 11.00 µm. The single paths are 0.5 mm wide and separated by 0.2 mm
wide areas of unpoled material. The device is etched in order to indicate the poled regions. The
individual paths are represented in graph 3.3 by five phase matching curves, distinguished by
color. The advantage of several periodicities in one crystal is that the phase matching condi-
tion can be satisfied for a broader range of wavelengths, with one and the same crystal. This
feature ensures fast and simple tunability of the generated sum-frequency light: First, with the
aid of graph 3.3, one finds the appropriate combination of periodicity and temperature for the
desired wavelength. Temperatures above 100 ◦C are preferred because they prevent the crystal
from photorefractive damage [34]. Secondly, the crystal position is shifted until the incident
fundamentals propagate along the selected path. The gray area in Fig. 3.3 shows the region
over which the 1000 nm fundamental laser is tuned (while the second fundamental is fixed at
1551 nm) to obtain laser light between 607-619 nm. Frequency-doubling of this light generates
the 304-310 nm light, which is required for the planned excitation into Rydberg levels between
n = 30− 60 (Sec. 2.1).

Figure 3.2: Photograph of the PPLN in a metal holder. The luminous stripes, running from the
left to the right, indicate the five different periodicity gratings of the crystal.
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Figure 3.3: Theoretically calculated Sellmeier curves for a 5% MgO-doped congruent LiNbO3

with five periodically poled gratings. The colors denote the different periodicities: 11.00 µm
(black), 10.85 µm (yellow), 10.70 µm (blue), 10.55 µm (green), 10.40 µm (red). The transparent
gray area shows the region of interest for the Rydberg experiment: We fix the wavelength of
the first fundamental at 1551 nm while the second fundamental is tuned between 998-1029 nm
to generate 607-619 nm laser light by sum-frequency generation. For example: if we choose
the wavelength of the second fundamental to be 1010 nm, the phase matching condition will
be fulfilled for a temperature of ≈120 ◦C in the 10.70 µm (blue) grating or for ≈175 ◦C in the
10.55 µm (green) grating. The generated laser light will have a wavelength of 612 nm.

3.2 Optimized focusing into the nonlinear crystal

In 1968 Boyd and Kleinmann published a paper [35] in which the optimization of second-
harmonic generation and parametric generation for Gaussian beams were studied. They found
that the treatment of three-wave mixing processes (such as SFG) is formally identical to the
theory of second-harmonic generation. The mixing power P3 is derived to be

P3 = KP1P2lk0e
−α′l ·

[
(1− ζ2)(1− γ2)/(1 + γζ)

]
· h(σ, β, κ, ξ, µ) , (3.3)

with a material constant K (containing refractive indices, wavelengths, and the nonlinear coeffi-
cient d), incident fundamental powers P1 and P2, and crystal length l. α′ = 1/2(α1 + α2 + α3)
contains the absorption coefficients (α1, α2, α3)) of the three interacting light fields. The pa-
rameters k0, ζ and γ depend on the frequencies (w1, w2) of the fundamental light fields and the
respective refractive indices (n1, n2):

k0 =
n0w0/2

c
, γ =

w2 − w1

w2 + w1
, ζ =

n2 − n1

n2 + n1
,

where the variables n0 = (n1 +n2)/2 and w0 = (w1 +w2)/2 describe the degenerate refractive
index and degenerate frequency, respectively. The function h(σ, β, κ, ξ, µ) generally depends
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on all adjustable parameters required for the maximization of the output power of SFG: the
phase mismatch σ, the focal position µ, the focusing strength ξ, the double refraction β, and the
absorption κ:

σ = zR ·∆k

ξ =
l

2 · zR
β =

ρ

δ0

κ = 1/2(α1 + α2 − α3)zR

Here, zR denotes the Rayleigh length, ∆k the wave vector mismatch1, ρ the walk-off angle be-
tween fundamental and SFG beam, and δ0 = w0/zR the beam divergence with the minimum
beam radius w0. One advantage of quasi-phase matching by periodically poled nonlinear crys-
tals is that the angle of incidence can be chosen so that the walk-off angle ρ and with it the double
refraction parameter β is zero. According to [36] the absorption is negligible for nominally pure
crystals (e.g. α3 < 0.01 cm−1). Assuming that the fundamental beams are focused on the crys-
tal center also µ becomes zero and the output power is only dependent on the focusing strength
ξ and the phase mismatch σ (Fig. 3.4):

h(σ, ξ) =
1

4ξ

∣∣∣∣∫ ξ

−ξ
dτ

eiστ

1 + iτ

∣∣∣∣2 . (3.4)

Figure 3.4: 3D-plot of the function h(ξ, σ), proportional to the SFG output power, as a function
of the phase mismatch σ and the focusing strength ξ. The global maximum of the function, and
therewith of the SFG output power, lies at σ = 0.574 and ξ = 2.84.

1The wave vector mismatch corresponds to ∆k = 2π
[
n3(λ3,T )

λ3
− n1(λ1,T )

λ1
− n2(λ2,T )

λ2
− 1

Λ

]
with ni given by

the Sellmeier equation (3.2)
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Fig. 3.5 corresponds to a projection of the graph h(σ, ξ) in Fig. 3.4 onto the plain of opti-
mum phase mismatch σopt = 0.574, to show h as a function of the focusing parameter ξ only.
Maximum output power is reached at

ξ = 2.84 (3.5)

for both fundamentals. This means, our aim is to shape the fundamental beams for the SFG so
that their Rayleigh length is

zR =
l

2 · 2.84
=

20 mm
2.84

= 7.04 mm

inside the PPLN and that their foci are placed in the center of the crystal. Optimum phase
matching is achieved by periodically poling of the LiNbO3 (Sec. 3.1). So, starting from the
crystal center, the theoretically optimal q-parameter for both fundamentals is given by

qPPLNcenter = (0 + 0.00704 i) m ,

with corresponding beam waists of 58.9 µm and 47.3 µm, for 1551 nm and 1000 nm respectively.
The propagation through 2 cm of LiNbO3 and the refraction on the planar crystal boundary mod-
ifies the q-parameters, depending on the corresponding wavelength and the refractive indices.
This evolution is derived via ABCD-matrices (see App. A for the calculation). Therefore, the
q-parameters at the outer front surface of the crystal are:

1550 nm: qairc.border = (0.00905 + 0.00319 i) m

1000 nm: qairc.border = (0.00897 + 0.00316 i) m

This corresponds to beam waists of 39.7 µm (1551 nm) and 31.8 µm (1000 nm) in air. With
the aid of the Mathematica program in App. B, appropriate optical telescopes were designed, to
match to the target q-parameters.

Figure 3.5: Function h(ξ), proportional to the SFG output power, for optimized phase matching
σopt = 0.574. Absorption, double refraction and focus position are zero. The dashed line marks
the value for optimum focusing strength ξ = 2.84.

One notices that the optimization is not very sensitive with respect to the focusing parameter:
the curve in Fig. 3.5 deviates only 10% from its maximum in the range between 1.6 < ξ < 4.4.
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Therefore, it is relatively straightforward to achieve a high sum-frequency conversion efficiency.
With the setup in Sec. 4.2 a focusing strength between ξ = 1.5− 3.2 is obtained.

The focusing strength also affects other characteristics of the SFG process: The graphs in
Fig. 3.6 show how the sinc-like pattern, derived in Sec. 2.2.2, changes with respect to the focus-
ing parameter: Compared to the function in Fig. 2.7, an asymmetry shows up, which increases
with rising ξ. The contrast of the minima decreases and the spacing of the maxima on the side
σ > 0 enlarges, relative to the side σ < 0. For very high focusing strengths ξ ∼ 10 the sym-
metric interference pattern almost vanishes and only a weak structure of minima is superposed
on a gradual decay. This asymmetric development is also visible in the characterization of our
generated sum-frequency light (Fig. 4.5).

(a) ξ = 1 (b) ξ = 2.84

(c) ξ = 5 (d) ξ = 20

Figure 3.6: Function h(σ), proportional to the SFG output power, as a function of the phase
mismatch σ for selected values of the focusing strength. The phase mismatch is to first order
proportional to the crystal temperature. Absorption and double refraction are zero. (a) The
familiar, almost symmetric interference pattern is visible (c.f Fig. 2.7). (b) The curve has a
similar structure as (a), besides the upcoming asymmetry. (c) The coherence length pattern
becomes weaker, the minima in the σ > 0 region are shifted and the spacing of the minima on
the side σ > 0 is clearly broader than on the side σ < 0. In (d) the strong focusing pattern is
strongly pronounced: a weak structure of equidistant minima is superposed on a gradual decay.
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3.3 Ring resonator

The resonant doubling cavities in our SHG devices are designed in a bow-tie ring geometry [37].
They consist of two plane and two concave mirrors, defining the so called “ring resonator”. The
nonlinear crystal (LBO or BBO in our case) is located between the two spherical mirrors, at the
position of the beam waist. That way, the fundamental laser beam always passes the crystal in
the same direction and the resonator acts as build-up cavity, increasing the fundamental laser
power at the position of the nonlinear crystal. Thereby the nonlinear effect is enhanced. Fig. 3.7
shows the principle of a ring resonator.

Figure 3.7: Schematic of a resonant doubling cavity designed as a ring resonator. It consists of
two plane mirrors (RM1, RM2) and two concave mirrors (RM3, RM4). The nonlinear crystal
sits at the beam waist between the concave mirrors. A piezo allows adjusting the cavity length.

The mode behaviour of the cavity is determined by the length of the nonlinear crystal, the
mirror spacing, the radii of curvature of the curved mirrors, and the angle of incidence of the
light field on the mirrors. Mirror RM1 transmits the fundamental beam partially in a way that
the intensity in the ring cavity is maximized. The piezo element on RM2 allows adjusting the
cavity length to bring the cavity in resonance to the fundamental laser. Usually, the cavity
mirror RM4 is highly transmissive to the converted light so that the cavity is only resonant to the
fundamental light. The frequency doubled light beam is extracted through the concave mirror
RM4. A photodiode, located behind RM3, allows determining the intra-cavity laser power.



Chapter 4

Laser system for two-photon Rydberg
excitation

This chapter contains an experimental analysis of the laser system for the planned excitation of
strontium ions from the 4D5/2 into a Rydberg state above n = 30. It includes a description of
the optical setup as well as a quantitative characterization of the sum-frequency generation.

4.1 The two excitation steps: 4D5/2→ 6P3/2 at 243 nm and
6P3/2→ n=30-60 S/D at 305-310 nm

As mentioned in Sec. 2.1, we plan a two-photon excitation to overcome the large energy gap
between the 4D5/2 qubit level and a Rydberg level with a principal quantum number between
n = 30− 60.

Figure 4.1: Level scheme for the two-photon Rydberg excitation of a 88Sr+ ion.

The 243 nm light for the first Rydberg excitation step is obtained by frequency quadrupling
of 972 nm laser light by two cascaded second-harmonic generation processes. Toptica provides
a commercial device for this application, the “TA/DL-FHG pro” [37]. A grating stabilized diode
laser produces 972 nm light (typically 38 mW), which is amplified in a semiconductor tapered
amplifier to typically 620 mW. The second-harmonic light (486 nm) is generated by a LBO
crystal, mounted inside a ring resonator1 to increase the fundamental laser power. The achieved

1Sec. 3.3 explains the working principle of the ring resonator.
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light (about 210 mW) is again frequency-doubled by a BBO crystal in a second ring cavity,
to finally obtain typically 30 mW of 243 nm laser light. The final output power reaches up to
100 mW for higher tapered amplifier currents. The phase matching condition in the crystals is
satisfied by angle phase matching. Two optical isolators protect the tapered amplifier and the
seed laser diode from back reflections.

(a) (b)

(c)

Figure 4.2: Setup of the sequenced fourth-harmonic generation device “TA-FHG pro”. (a)
Schematic setup. The colored lines show the paths of 972 nm (yellow), 486 nm (blue) and
the final output light at 243 nm (green). (b) Photograph of the TA-FHG pro. The lines were
artificially added to denote the beam path. The line colors and the arrangement of the technical
elements correspond to schematic (a). The two SHG-cavities are housed inside the trapezoidal
metal cases. (c) Photograph of 486 nm light between the two SHG-cavities. 972 nm and 243 nm
are not visible to the naked eye.
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The laser light required for the second excitation step is more difficult to obtain, since we
have special demands: it should have a linewidth .100 kHz and be tunable, to allow excitation
to several Rydberg levels above n = 30. The following sections describe the laser system to
generate laser light at 304-310 nm. The idea is to mix 998-1029 nm and 1551 nm light in a sum-
frequency generation process to obtain 607-619 nm, (Sec. 4.2) which is then frequency-doubled
to 304-310 nm (Sec. 4.3).

4.2 Sum-frequency generation of 607-619 nm light

The setup for the sum-frequency generation in Fig. 4.3 relies on a similar system for laser cooling
and manipulation of Be+ ions at 313 nm wavelength [16]. In our setup two infrared lasers
constitute the fundamental beams for the nonlinear process:

• a tunable 1000 nm diode laser (Toptica) with a build-in tapered amplifier and a maximum
output of ∼1.5 W and

• a 8 kHz broad, 1551 nm diode laser (TeraXion), which is amplified by a fiber amplifier
(Manlight) to a maximum power of 10 W. An additional 5 dB attenuator and two fiber
isolators (60 dB and 40 dB isolation) should prevent the master laser from strong back
reflections.

The 1551 nm light leaves the amplifier directly through a fiber with an attached collimator, so it
has a well defined Gaussian shape. The 1000 nm light leaves the laser box in free space. Since
its beam shape is distorted by the tapered amplifier, we couple it into an external fiber as well for
mode filtering. Both laser beams pass through polarizing beamsplitter cubes to adopt vertical
polarization with respect to the optical table. Their q-parameters are shaped in telescopes in
order to satisfy the Boyd and Kleinman condition for optimum frequency conversion efficiency
(Sec. 3.2):

ξ =
l

2 · zR
= 2.84

⇒ zR =
40 mm

(2 · 2.84)
= 7.0423 mm ,

for a crystal length of l = 40 mm. zR denotes the theoretically optimal Rayleigh length within
the crystal. This corresponds to a beam waist of 47 µm for the 1000 nm beam and 59 µm for
the 1551 nm beam. Using ABCD-matrices one derives the corresponding q-parameters (cf.
Sec. 3.2) and calculates the corresponding waists in free space: 32 µm and 40 µm respec-
tively. A Mathematica-program (App. B) determines appropriate telescopes for matching the
q-parameters: The telescope for the 1000 nm beam consists of a f1 = −50 mm plano-concave
and a f2 = 100 mm plano-convex lens. They are spaced by 13.9 ± 0.3 cm and mounted on sin-
gle axis translation stages for fine adjustment of the spacing and the focus position. The achieved
beam waist measures 30± 6 µm in free space. The distance between second lens and front sur-
face of the crystal measures 20.5 ± 0.5 cm, so that the waist will be positioned at the center of
the crystal. The plano-convex lenses for the 1551 nm beam have focal lengths f1 = 100 mm
and f2 = 75 mm. They are spaced by 21.5 ± 0.3 cm and generate a 50 ± 10 µm waist in free
space. For a distance of 26.0 ± 0.5 cm between second lens and crystal surface, the beam waist
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is sited midway along the crystal’s length. The achieved waist sizes are comparable with the
theoretical optimal values for both fundamental beams and result in focusing parameters in the
range of 1.5 < ξ < 3.2, close to the optimal value of 2.84.

Next, the two infrared beams are spatially overlapped on a dichroic mirror and the crystal
is build in at the distances mentioned above. The crystal itself sits in an oven, mounted onto a
translation stage with 5 degrees of freedom. This allows for optimization of the beam propaga-
tion through the different periodicity paths. The 1000 nm light path in the crystal is observable
with a commercial video camera (after removal of the infrared filter), to ensure that the two
fundamentals propagate straight through a selected path. By adjusting the horizontal position
of the oven perpendicular to the beam propagation, one can select the path along which the
beams propagate through the crystal and thus which poling periodicity they meet. According to
Sec. 3.1, the periodicity and temperature of the crystal are chosen such that the phase matching
condition is satisfied and maximum output power of 608 nm light is achieved. Finally, the output
light field is reflected off three dichroic mirrors in order to filter out the fundamental light com-
ponents. The remaining 608 nm light is split at a polarizing beam cube to send a small part of
the power to a stabilizing cavity and the other part to the SHG device. The generated wavelength
can be tuned by adjusting the optical grating of the 1000 nm laser (an external cavity diode laser
in Littrow configuration, tunable between 998-1029 nm) as well as the temperature of the PPLN
and the respective periodicity path (Sec. 3.1, especially Fig. 3.3). This way it is possible to tune
the output light from 607-619 nm.

Figure 4.3: Schematic diagram of the optical setup for sum-frequency generation. The infrared
light of two diode lasers (tunable 1000 nm and 1551 nm) is summed in frequency in a 4 cm
long PPLN to generate 607-619 nm laser light. Dichroic mirrors (DM) are used to overlap
the fundamental beams and filter them out of the light field after the sum-frequency process.
Polarizing beam splitters (PBS) are used to guarantee that the beams are polarized vertically2

with respect to the optical table and together with the half-wave plates (λ/2) they can be used
to fine-adjust the optical power of the fundamental beams. The telescopes shape the Gaussian
beams so that they satisfy the condition for optimum frequency conversion (Boyd and Kleinman,
Eq. (3.5)). ISO: optical isolator, DL: diode laser, TA: tapered amplifier, SMF: single-mode fiber,
COL: collimator, PPLN: periodically poled lithium niobate crystal.

2The polarization of the fundamental beams must be aligned with the dipole moment of the crystal to utilize the
nonlinear properties of the PPLN. Light polarized horizontally with respect to the optical table will be transmitted
through the crystal unaffected.
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Figure 4.4: Photograph of the SFG Setup. Starting from the collimator the entire paths of the
infrared fundamental beams can be followed. The 1551 nm light starts from the lower left corner
and is artificially indicated by a thin, dashed green line. The 1000 nm beam begins in the upper
right corner and is indicated by a thin, dashed yellow line. The cylindrical black object close
to the upper left corner is the crystal oven, the origin of the visible orange 608 nm laser beam.
Three black beam blocks are mounted directly behind the dichroic mirrors, which transmit the
remaining fundamental components for filtering. The two blue fibers send the 608 nm light to a
stabilizing cavity and the SHG setup respectively.

4.2.1 Characterization

In order to characterize the 607-619 nm light, the 1000 nm laser is first tuned to 1010 nm and
the middle path of the PPLN, with a periodicity of 10.70 µm, is chosen. A crystal temperature
around 130 ◦C is required (cf. Sec. 3.1) to satisfy the phase matching condition. Thereby, laser
light at a wavelength of 612 nm is generated by mixing 1010 nm and 1551 nm fundamental
beams in the PPLN crystal.

As calculated in Sec. 2.2.2 the output power has a sinc-like dependency on the phase mis-
match. Since the temperature of the crystal is (to first order) proportional to the phase mismatch,
the output signal plotted against the temperature will also show a sinc behaviour. Regarding
Boyd and Kleinman [35], this function can show asymmetries in the case of strong focusing (cf.
Fig. 3.6 (c)), which goes hand in hand with the condition of optimal conversion in Eq. (3.5). This
asymmetry is visible in Fig. 4.5, where the 612 nm power is plotted as a function of the crystal
temperature. The error bars account for power fluctuations and uncertainties in the temperature
measurement.
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Figure 4.5: SFG output power as a function of the PPLN temperature. The red curve is a
modified (shifted and scaled) sinc-plot, which shows that the measurement is consistent with the
calculated behaviour in Fig. 2.7. The asymmetry at lower temperatures is due to strong focusing,
which is linked to the condition of optimum conversion efficiency [35]. The maximum output
power of 650 mW (for 1010 nm and 1551 nm pump lasers) is achieved at a temperature of
130.6 ◦C, the FWHM measures 1.1 ◦C.

One notices that the output power reaches it’s maximum at 130.6 ◦C, which does not exactly
correspond to the expectations in 3.1. This means that the specified, theoretical Sellmeier curves
(Fig. 3.3) deviate slightly from the experimental data for this crystal. We further investigate
this effect by experimentally reconstructing the Sellmeier curves: The temperature maximum is
measured for different detuning of the 1000 nm laser and for several poling periodicities, over
the entire wavelength range of interest3. Fig. 4.6 shows the result. The error bars include un-
certainties in temperature measurement and wavelength reading of the wavelength meter (High-
Finesse). For the 10.40 µm Sellmeier line only two data points are measured because the lower
tuning threshold of the 1000 nm laser is reached. Therefore this Sellmeier line is not very pre-
cise. Fig. 4.7 reveals the difference between the theoretical (gray) Sellmeier curves, derived in
Sec. 3.1 and the experimental (colored) Sellmeier curves.

3Tunability of the 1000 nm laser between 998-1029 nm is necessary in order to generate laser light of 304-310 nm
and enable excitation into Rydberg states between n = 30− 60 (cf. Fig. 3.3).
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Figure 4.6: Measured Sellmeier curves over the area of interest. The graph shows the tunability
of 607-619 nm output light. The first pump laser is fixed at 1551 nm while the second pump
laser is tuned between 998-1029 nm. The theoretical curves were approximated with lines,
with different colors denoting different crystal periodicities, specified by the attendant colored
numbers.

Figure 4.7: Comparison of the measured (colored) with the theoretically calculated Sellmeier
curves (gray). The colors of the lines denote the crystal periodicities: 10.85 µm (green),
10.70 µm (red), 10.55 µm (blue), 10.40 µm (purple). The slopes of the curves are comparable
but the differing offsets seem to indicate that the specified poling periodicities are wrong.
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To first order, the experimentally determined lines are shifted towards lower wavelengths relative
to the theoretical curves. Equation (3.1) indicates that such an offset could be explained by
slightly different poling periodicities, which would mean that the specified crystal periodicities
are inaccurate. In order to find the matching poling periodicity values, the four theoretical curves
are adapted until they roughly overlap with the experimental lines (Fig. 4.8). Table 4.1 shows a
first correction of the crystal periodicities.

10.85 µm → 10.823 µm
10.70 µm → 10.674 µm
10.55 µm → 10.527 µm
10.40 µm → 10.369 µm

Table 4.1: First correction of the crystal periodicities. The specified values on the left are
replaced by the empirically determined values on the right.

Figure 4.8: Theoretical Sellmeier curves (gray) adapted to the experimentally measured lines
(colored). The line colors denote the different modified crystal periodicities: 10.823 µm (green),
10.674 µm (red), 10.527 µm (blue), 10.369 µm (purple). The correction matches for the most part
of each curve. At higher temperatures the experimental lines do not follow the bending of the
theoretical curve. Further analysis shows that it is not the approximation of a linear relationship
which causes the deviation.

After correcting the periodicities of the theoretical curves, they still deviate from the exper-
imentally obtained lines at higher temperatures. One could assume that it is caused by fitting
the data with only a straight line, however, the theoretically predicted curve does not match the
measured data points in this region, even considering error bars. Fig. 4.9(a) illustrates this for the
case of the Sellmeier line with the largest error bars. According to Eq. (3.2), b1 is one parameter
which is responsible for the slope of the Sellmeier curves. According to [31], it accounts for
thermal effects in the crystal. The other parameters which could compensate for the deviation
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are strongly correlated. Moreover, the characteristics for which they account in the equation
are more difficult to estimate. Therefore, the b1 parameter is adjusted in order to correct for
the slope difference. Additionally, the periodicities are corrected once more until the theoretical
curve touches the three data points, within the error bars (see Fig. 4.9(b)).

Figure 4.9: Comparison between theoretically predicted Sellmeier curve and measurement, on
the example of the 10.527 µm periodicity. The theoretical curve is gray, the red dots and error
bars are measurement data and the blue line is a linear fit of the measurement points. Graph
(a) shows the status after the first periodicity adaptation (10.55 µm → 10.527 µm). A strong
slope deviation at the high temperature region remains so that the theoretical curve does not
cover all data points, even considering error bars. In graph (b) the b1-parameter is modified
(2.860 · 10−6 → 3.060 · 10−6) and the periodicity is once more adapted (→ 10.540 µm), to
achieve a sufficient overlap between theory and measurement.
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The modifications of the b1 parameter and of the crystal periodicities are finally applied onto
all five periodicity paths. The result is visible in Fig. 4.10 and summarized in table 4.2. The
deviations from the specified periodicities lie around 10 nm. The biggest deviation (14 nm) is
registered at the 10.40 µm periodicity, which was only fitted by two measurement points and is
therefore not very reliable. The obtained graph is used to tune the wavelength generated by the
sum-frequency process fast and efficiently between 607-619 nm.

b1: 2.860 · 10−6 → 3.060 · 10−6

10.823 µm → 10.841 µm
10.674 µm → 10.689 µm
10.527 µm → 10.540 µm
10.369 µm → 10.386 µm

Table 4.2: Final correction of the b1 parameter and the crystal periodicities. The specified values
on the left are replaced by the empirically determined values on the right.

Figure 4.10: Final adapted Sellmeier curves in the region of interest. The b1-parameter and the
specified crystal periodicities are corrected until sufficient overlap between theoretical specified
curves (gray) and experimentally determined lines (colored) is reached. The colors denote the
different modified crystal periodicities: 10.841 µm (green), 10.689 µm (red), 10.540 µm (blue),
10.386 µm (purple).

With these results we can theoretically simulate the behaviour of the SFG output power
as a function of the temperature (representing the phase mismatch4) according to the plots in
Fig. 3.6. Double refraction and absorption can be considered to be zero and the foci of our

4The temperature is in first order proportional to the phase mismatch σ = zR · ∆k = zR ·
2π
[
ne(λ3,T )

λ3
− ne(λ1,T )

λ1
− ne(λ2,T )

λ2
− 1

Λ

]
, with ne given by the Sellmeier equation (3.2).
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fundamental beams are positioned in the center of the crystal so that we can use the function
h from Eq. (3.4) to simulate the behaviour of the SFG output power. Fig. 4.11(a) shows the
theoretical simulation for λ1 = 1010 nm, λ2 = 1550.9 nm,Λ = 10.6894, and ξ = 3.2. It is
in good agreement with the experimental result, reproduced in Fig. 4.11(b). The deviation in
shape at lower temperatures may be caused by an inhomogeneous temperature profile within the
crystal, resulting in an effective gradient in the refractive index. Possible causes for this effect
are inhomogeneous heating of the crystal by the oven or thermal lensing5.

(a) (b)

Figure 4.11: Theoretically simulated (a) and experimentally determined (b) SFG output as a
function of the crystal temperature. The maximum lies around 130.6 ◦C and the asymmetry,
caused by strong focusing, is visible in both graphs. The deviation in shape at lower temperatures
could be caused by a temperature-gradient in the crystal. The sinc-like pattern on the right-hand
side of the maximum is apparent in both graphs.

Next, the conversion efficiency η of the SFG is analyzed.

η =
P612

P1010P1551
· 1

l
, (4.1)

where P612/1010/1551 refers to the power of the beam with wavelength 612 nm,1010 nm or
1551 nm and l = 4 cm denotes the length of the crystal. The first part of Eq. (4.1) is determined
by measuring the output power of 612 nm versus the product of input powers of the two fun-
damental lasers. Fig. 4.12 shows this measurement. It contains two series: First the 1551 nm
power is fixed at 8.68 ± 0.06 W and 1010 nm is varied between 264-837 mW and secondly
the 1010 nm power is fixed at 800 ± 20 mW and 1551 nm is varied between 2.39-9.07 W. The
maximum obtained output power at 612 nm is 650 mW. The individual data points correspond to
efficiencies between 2.1-2.5%. The slope of a line fit through all data points leads to an overall
efficiency of

η =
(0.093± 0.004) %

4 cm ·W
= (2.3± 0.1)% W−1cm−1 .

5The absorption of laser light is enhanced at the beam focus so that the crystal heats up in the region of the beam
focus.
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Figure 4.12: SFG output power versus the the product of the input powers. The blue dots are
measurement data where the power of the 1551 nm laser is fixed at∼8.7 W and the power of the
1010 nm laser is tuned. The green dots denote data where 1010 nm is fixed at∼800 mW and the
1551 nm power is varied. The error bars arise from uncertainties in the power measurements.
The red curve is a line plot where both series of measurement were taken into account equally.

4.3 Frequency doubling to 304-310 nm

Similar as the FHG device, the setup for the frequency doubling of the 607-619 nm light into
304-310 nm is a commercial system, provided by Toptica. The “SHG pro” uses an LBO crys-
tal, mounted inside a ring resonator (Fig. 4.13(a)). An universal fiber coupler couples the
607-619 nm light into the device. The beam is shaped by mode matching optics and sent into
the resonant doubling cavity by two folding mirrors. Also the 304-310 nm beam is shaped into
a collimated, symmetric beam, before it leaves the device. Similar to the “TA/DL-FHG pro”
the phase matching condition is satisfied by angle phase matching. So, once the wavelength of
the fundamental beam is tuned, the angle of incidence has to be modified to satisfy momentum
conservation. For that purpose the nonlinear crystal is mounted on a horizontally shiftable and
tilting stage. Additionally, the outcoupling mirror RM4 (and eventually mirror RM3) has to be
readjusted in such a way that the beam propagates straight through the final beam shaping optics
and the output slit. The position of one of the mirrors is controlled with a piezo, thereby allowing
stabilization of the doubling cavity length to be resonant to the wavelength of the 607-619 nm
light (subsection 4.4).
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(a)

(b)

Figure 4.13: Setup of the second-harmonic generation device “SHG pro”. (a) Schematic setup.
The red line shows the path of the 607-619 nm light, the green line denotes the UV light (304-
310 nm), generated by the LBO crystal. (b) Photograph of the SHG pro. The SHG cavity
is arranged inside the trapeziodal metal case. The position of the individual optical elements
corresponds to the arrangement in picture (a).

Sending 100 mW of 612 nm into the SHG device and stabilizing the doubling cavity to
the input light, a conversion efficiency of (6.0 ± 0.5)% is measured. Note that during this
measurement the 612 nm linewidth was not narrow because of high-frequency noise on the
1551 nm master laser. Once this problem is solved, a conversion efficiency of up to 30% is
expected, as this was observed during installation, where 260 mW of 612 nm fundamental laser
light were converted to 75 mW of 306 nm laser light. Therefore, the desired power of 5 mW at
306 nm (derived in Sec. 2.1.2) is feasible.

4.4 Stabilization of the 304-310 laser light

As estimated in subsection 2.1.2 a laser linewidth of ∆ν . 100 kHz is required for the Ryd-
berg excitation lasers. A narrow linewidth of the 304-310 nm laser requires frequency-stable
fundamental lasers. The linewidth of the 1551 nm master laser is specified to be on the order
of 10 kHz, whereas the tunable 1000 nm laser has to be stabilized to an external cavity, with a
linewidth of ∆νcav = 214 kHz and a finesse around F ≈ 7000. We built this cavity in-house,
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according to a design of Muir Kumph6. It is a four-rod cavity, consisting of four different cav-
ities, mounted on a single ultra low expansion (ULE) glass cylinder inside a vacuum chamber.
Fig. 4.14 shows a sketch of the mount for the concave cavity mirrors, where two piezo rings are
mounted in such a way that they will expand/contract in opposite directions. Therefore, temper-
ature fluctuations are partially compensated and affect the cavity length to a lesser extent. Some
building steps and the complete cavity system are visible in Fig. 4.15.

Figure 4.14: Mounting stage for the concave cavity mirrors in cross section. Two Macor ceramic
rings connect the piezo rings, which can be driven by the colored, vacuum compatible Kapton
wires (c.f. Fig. 4.15(a)). The outer piezo ring is fixed onto the ULE glass cylinder, which
provides a stable spacing between the two cavity mirrors (c.f. Fig. 4.15(b),(c)). With this setup
temperature fluctuations affect the cavity length to a lesser extent because the two piezo rings
mutually compensate for their temperature dilatation.

The frequency stabilization of a laser to the respective cavity is performed through the
Pound-Drever-Hall (PDH) method [38, 39]. This technique stabilizes the laser frequency by
actively tuning the laser so that it is resonant to a stable reference cavity. In our case, the sta-
bilization loop starts at the Digilock 110 module7 which modulates the laser current (phase
modulation) at 20 MHz frequency, resulting in sidebands of opposite phase around the carrier
frequency in the laser frequency spectrum. This modulated light field is sent towards a stable
two-mirror cavity in which the carrier signal gains a phase shift, causing an intensity modulation
in the cavity-reflected signal. The strength and the direction of the frequency mismatch between
the laser and the reference frequency set by the cavity, are stored in this intensity modulation.
A photodiode converts the cavity-reflected light field into an electronic signal which is then de-
modulated to selectively filter the frequency mismatch information (the so called “PDH error
signal”). A PID regulator circuit converts the PDH error signal into a correction signal for the
laser frequency stabilization.

6At this time M.Sc. at the Institute of Experimental Physics, University of Innsbruck. Muir.Kumph@uibk.ac.at
7The Digilock 110 is a digital laser stabilization module from Toptica. It contains the electronics to generate

error signal and feedback current/voltage to control laser frequency fluctuations, according to the PDH method.
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In our system, the demodulation happens in the Digilock module itself. We feed in the reflec-
tion signal of the cavity and receive the error signal for the PDH-based frequency stabilization.
The electronic control unit in the Digilock also contains two adjustable Proportional-, Integral-,
and Derivative regulators to stabilize the laser frequency: one optimizes the feedback voltage to
the optical grating in the diode laser and the other optimizes the current-correction signal going
to the laser diode. After the stabilization of the 1000 nm laser we estimate a satisfying linewidth
of ∆ν1000 ∼ 30 kHz. Similar to the 1000 nm stabilization cavity, external cavities were built
for the 607-619 nm and 1551 nm light to check their linewidths. The 607-619 nm cavity may
optionally be used to stabilize the 607-619 nm light by regulating the 1000 nm laser.

The next step towards a narrow linewidth for the 304-310 nm light is to lock the SHG cav-
ity [37] to the 607-619 nm light in order to increase the intensity of the circulating wave and
thereby enhancing the nonlinear effect. One of the ring resonator mirrors is mounted on a piezo
to adjust the cavity length (Sec. 3.3) and the corrective signal is generated by a commercial,
PDH based PID module (Toptica: PID 110). This module employs the sidebands, which were
originally modulated on the 1000 nm laser but are still visible after the sum-frequency genera-
tion.

From the transmitted signal of the SHG cavity we estimate a lower limit for the 607-619 nm
linewidth of ∆ν612 & 1 MHz, which corresponds to ∆ν306 & 2 MHz for the 304-310 nm light.
This is much broader than the target value of 100 kHz. After checking all possible problem
sources we come to the conclusion that the 1551 nm master laser has a much broader linewidth
than expected. Even the stabilization of the 1000 nm light (when stabilizing 612 nm to the
cavity) can not compensate for this high-frequency noise. An additional fiber isolator of 60 dB,
between the amplifier and the 1551 nm master laser, did not solve the problem so the spectral
properties of this laser need further investigation to allow generation of 304-310 nm laser light
with a linewidth below 100 kHz.
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(a) (b)

(c) (d)

Figure 4.15: Photographs of some building steps and the complete four-rod cavity for frequency
stabilization of four lasers. Picture (a) shows a concave mirror and piezo rings mounted on
Macor rings (Fig. 4.14), one step before gluing the outer piezo onto the larger Macor ring. The
cavity mirror (yellowish element in the center), the colored Kapton wires and the inner piezo ring
are already assembled. Here, the Macor rings, the mirror, and the piezos are connected through
UV curable glue, whereas the wires are bonded to the piezos via electrically conductive silver-
epoxy. (b) and (c) illustrate how the planar cavity mirrors and the mounted concave mirrors of
(a) are glued onto the cylindrical ULE glass spacer. In picture (d) the cavity system is placed
into a cylindrical vacuum chamber. The Kapton wires, behind the viewport, are connected to
the vacuum feedthrough at the left side of the upper cube. The adapter on the front is the valve
for connecting a turbo-molecular pump. The ion getter pump, connected to the back side of the
cube, is barely visible.



Chapter 5

Summary and Outlook

The aim of this master thesis was to set up and characterize a laser system for exciting strontium
ions into Rydberg states. The planned two-photon excitation scheme requires two UV lasers of
243 nm and 305-310 nm.

We first estimated the required specifications of these lasers: The tunability of the 305-
310 nm laser light should allow exciting the ions into any Rydberg state between n = 30− 60.
Based on discussions on the wave functions of the involved transitions, we estimated that we can
achieve an effective two-photon Rabi frequency between 2π 1.5 MHz < Ω < 2π 13 MHz with
a power of 5 mW and a beam waist of 5 µm. Therefore, excitation and de-excitation can succeed
before the spontaneous decay of the Rydberg state since the estimated Rabi frequency is much
higher than the typical linewidth of the addressed Rydberg level (kHz-regime). Moreover, we
want the linewidths of the Rydberg excitation lasers to be below 100 kHz (much smaller than
the effective Rabi frequency) so that the phases of excitation and de-excitation coincide.

The 243 nm laser light for the first Rydberg excitation step is commercially available. It is
generated by two cascaded second-harmonic generation processes of 972 nm laser light. The
typical output power of 30 mW at 243 nm meets the desired specifications for generating a Rabi
frequency of several megahertz.

The generation of the 305-310 nm laser light for the second excitation step is performed by
sum-frequency mixing of 1551 nm and tunable 1000 nm laser light in a MgO-doped PPLN crys-
tal and subsequent second-harmonic generation in a commercial system. Setting up and char-
acterizing this system was the main topic of this master thesis. The SFG output power shows a
sinc-like dependence on the phase mismatch (temperature tuning) superposed by a slight asym-
metry, which is consistent with the discussed theory [35]. The SFG efficiency was measured to
be η = (2.3± 0.1)% W−1cm−1 at 612 nm, employing the 10.7 µm periodicity path at a crystal
temperature of 130.6 ◦C. Mixing 840 mW of 1010 nm and 8.68 W of 1551 nm in the PPLN
crystal we achieved a maximum output power of 650 mW at 612 nm. Unfortunately, the fre-
quency of the excitation lasers could not yet be stabilized to linewidths below 100 kHz because
one of the fundamental lasers still shows high-frequency noise and needs further investigation.
Moreover, we tested and adapted the Sellmeier curves for the five gratings of different periodical
poling in our PPLN crystal in order to allow fast and efficient tuning of the SFG wavelength.
We could show that the SFG output wavelength is tunable between 607-619 nm, which trans-
forms to 304-309 nm after frequency-doubling. Together with the commercial 243 nm laser this
wavelengths allow excitations into any Rydberg state above n = 30 (up to double ionization).
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At the moment of writing, the ion trap for the strontium ions is being set up1 and in the
near future the laser system of this thesis will be tested for Rydberg excitation. The Rydberg
excitation might not be very efficient at the beginning, therefore, a reliable and sensitive method
to prove a successful Rydberg excitation is required. One possible, very sensitive method would
be fluorescence detection via so called “electron shelving” (Fig. 5.1).

Figure 5.1: Electron shelving scheme for detecting successful Rydberg excitation. The detec-
tion scheme consist of five steps: (0) Initial state preparation 4D5/2, (1) Rydberg excitation, (2)
Hiding in the 5S1/2 state, (3) De-excitation from the Rydberg state, (4) Fluorescence detection:
dark (no fluorescence) signals successful Rydberg excitation, bright (fluorescence) signals that
the 5S1/2 state was populated and no Rydberg excitation was achieved.

The electron shelving detection scheme consist of five steps:

0. Prepare the ion in the 4D5/2 state

1. Excite the ion into the Rydberg state (two-photon excitation)

2. Hide the remaining population in the 5S1/2 state

3. De-excite the ion from the Rydberg state to the initial 4D5/2 state

4. Fluorescence detection: 5S1/2 → bright, 4D5/2 → dark. Detection of emitted 422 nm
light indicates that the Rydberg state was not excited, while no fluorescence indicates that
Rydberg excitation was successful.

1The detailed scheme of our linear Paul trap with corresponding direction of optical access and focusing tech-
niques are summarized in the master thesis of Fabian Pokorny - at this time B.Sc. at the Institute of Experimental
Physics, University of Innsbruck.
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An alternative possibility would be to excite the ion into the Rydberg state and wait until it de-
cays, so that population is found (with a high probability) in the 5S1/2 state. Whether or not
the Rydberg excitation was successful will be tested by observing the fluorescence rate on the
5S1/2 ↔ 5P1/2 transition, while scanning the second Rydberg excitation laser: On resonance
with a Rydberg state the fluorescence rate should clearly increase with respect to the off-resonant
case. Contrarily, if Rydberg excitation was not accomplished the population of the 4D5/2 will
decay at a low rate to the 5S1/2 state. In this case the 5S1/2 ↔ 5P1/2 fluorescence rate will be
unaffected by the spectroscopic scan of the Rydberg excitation laser.

Finally, I want to conclude with the saying on the first page, which translates as:

Everyone said “That is not possible.”
Then one came, who didn’t know, and did it.

In my view this is the best way to describe the current state of quantum physics research. Al-
most 70 years ago, when the first mechanical computers were built, no-one would have believed
that people would be able to trap, manipulate and even perform calculations with single ions.
Nowadays, we already deal with the scalability problem of such systems and I think trapped,
Rydberg ions present a promising approach to solve this problem.



Appendix A

ABCD-matrix formalism –
a Mathematica program

The ABCD-matrix analysis is a geometrical method to calculate how light beams are modified
by propagation through optical elements. This technique represents the state of a light beam at
a point z through a vector with two parameters: it’s distance r to the optical axis and included
angle α.

#„r (z) =

(
r(z)
α(z)

)
In the paraxial approximation, sin(α) ≈ tan(α) ≈ α, two state vectors at different position
values z are linearly connected. This linear relation is described by so called “ray transfer matri-
ces” (or ABCD-matrices), defined by the properties of the corresponding optical element. The
input ray vector is multiplied with this matrix to obtain the output vector, which then contains
all beam properties modified by the propagation through the element.(

r2

α2

)
=

(
A B
C D

)(
r1

α1

)
Analogously, the evolution of a Gaussian beam, with initial q-parameter q1, is described by(

q2

1

)
=

(
A B
C D

)
⊗
(
q1

1

)
⇒ q2 =

Aq1 +B

Cq1 +D
(A.1)

Consecutive propagation through more than one element is described by multiplying the corre-
sponding ABCD-matrices. Since multiplication of matrices is non-commutative the order of the
matrices is important: The matrix of the optical element passed first is sited at the first place
from the right side so that it acts first onto the input beam. Some important ray transfer matrices:

• Propagation over a distance d in free space or in a medium of constant n: fs(d)≡
(

1 d
0 1

)
• Refraction on a planar boundary, with initial refractive index n1 and final refractive index

n2: plan(n1, n2) ≡
(

1 0
0 n1

n2

)

• Propagation through a thin lens: lens(f ) ≡
(

1 0
− 1
f 1

)
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The target beam parameters for our setup were calculated with the following Mathematica pro-
gram. The computation of q-parameters and corresponding waists is demonstrated on the exam-
ple of the 1000 nm beam.

– – – – Mathematica file TOP – – – –

Basic functions to characterize the beam

(* q-paramter at distance z from the minimum beam waist, with Rayleigh length z0. R(z) is
the radius of curvature, w(z) the beam size (radius) at position z, and λ the wavelength *)

q(z) = z + iz0

1
q(z) = 1

R(z) -i λ
πw(z)2

(* definition of q via R and w *)

qd[R_,w_, λ_]:=
(

1
R −

iλ
πw2

)−1
;

(* distance from minimum beam waist *)

z[q_]:=N [Re[q]];

(* Rayleigh length *)

z0[q_]:=N [Im[q]];

(* Radius of curvature at this position *)

R[q_]:=N [1/Re[1/q]];

(* beam size at this position *)

w[q_, λ_]:=N

[
√
(

−λ
πIm

[
1
q

]
)]

;

(* minimum beam waist *)

w0[q_, λ_]:=w[q − z[q], λ];

(* divergence angle *)

θ[q_, λ_]:=N
[

λ
πw0[q,λ]

]
;

ABCD matrix formalism (see e.g. Saleh, Teich, page 28/29 & 99)

(* calculating the output q-parameter via the transfer matrix T . T[[1,1]] denotes the matrix
entry of the 1st line, 1st row (c.f Eq. (A.1)). *)

ABCD[T_, q_]:=Module[{}, T [[1,1]]q+T [[1,2]]
T [[2,1]]q+T [[2,2]] ]
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(* ABCD of propagation through d m of free space or medium with constant refractive index *)

fs[d_]:=

 1 d

0 1

 ;

(* refraction on planar boundary with initial refractive index n1 and final refractive index n2 *)

plan[n2_, n1_]:=

 1 0

0 n1
n2

 ;

Definitions

(* wavelength of propagating beam in m *)

λ = 1000 10−9;

(* target waist in the center of the crystal, so that zR =7.042253521 mm *)

wC = Sqrt[λ ∗ 7.042253521 ∗ 10∧(−3)/π];

(* half the crystal length in m *)

d2 = 0.02;

(* refractive index of the crystal: 2.21 for 1551 nm, 2.23 for 1000 nm )

nC = 2.23;

Calculation of optimum parameters

(* q-parameter of the beam at the crystal center when zR=7.042253521mm *)

qC = N [qd[∞,wC, λ]]

0.0 + 0.00704225i

(* waist inside the crystal, when zR=7.042253521mm *)

wC

0.0000473457

(* q-parameter of the beam at the outer border of the crystal when zR=7.042253521mm *)

q2 = ABCD[plan[1, nC].fs[d2], qC]

0.00896861 + 0.00315796i
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(* waist in free space, when zR=7.042253521mm *)

w7 = w0[q2, λ]

0.0000317051

Measurements

(* Measured q-parameter of 1000nm in free space at the second lens *)

q3 = −0.214441 + 0.00278552i

(* corresponding beam waist of 1000nm in free space *)

w3 = w0[q3, λ]

0.0000297768

(* q-parameter of 1000 nm at the outer crystal border (q3 propagating 0.205 m through
free space). Considering measurement errors, this coincides with the target value q2. *)

q4 = ABCD[fs[0.205], q3]

−0.009441 + 0.00278552i

(* q-parameter of 1000 nm at the crystal center: q4 refracted at the planar crystal border and
propagates over 0.02 m to the crystal center *)

q5 = ABCD[fs[0.02].plan[nC, 1], q4]

−0.00105343 + 0.00621171i (* the beam focus lies 1 mm before the crystal center *)

(* focusing strength of 1000 nm inside the crystal *)

xi = 0.04/(2 ∗ Im[q5])

3.21973 (* close to the target value of 2.84 *)

– – – – mathematica file BOTTOM – – – –

From q5, one notices that the measured beam focus lies 1 mm before the center of the crystal.
Since this lies within our distance measurement error, it is ignored. Within the measurement
errors, the determined q-parameter q4 at the outer border of the crystal matches with the target
parameter q2. The same is valid for the focusing parameter xi.



Appendix B

Matching q-parameters –
a Mathematica program

The following code is adapted from Stephanie Grabher (group of G. Weihs) and is used to find
appropriate telescope parameters (focal lengths f and distances d) for shaping a beam to an
arbitrary q-parameter. The plot at the end of the file contains the five telescope parameters
(d1,d2,d3,f1,f2), adjustable by the shifting bars and arrow buttons. The functions in the graph
denote the theoretically optimal q-parameter (blue) and the initial q-parameter of the beam to
match (red). The first kink in the red curve results from the first lens, which enlarges the beam
size. The second kink denotes the effect of the second lens, which focuses the beam down. The
focusing lengths and lens distances are adapted until the two curves overlap.

– – – – Mathematica file TOP – – – –

Mode matching beam q0 with q-parameter qM

(* initial q-parameter of the 1000 nm beam at the collimator output *)

q0 = 0.35064 + 0.33069i;

(* target q-parameter at the crystal surface *)

qM = 0.00896861 + 0.00315796i;

(* wavelength of the beam to match *)

λ = 1000 ∗ 10∧(−9);

(* Rayleigh lengths and beam waists of the corresponding q-parameters *)

zR0 = Im[q0];

zRM = Im[qM];

wo0 = Sqrt[λ ∗ zR0/π] ∗ 10∧6;

woM = Sqrt[λ ∗ zRM/π] ∗ 10∧6;
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(* beam size at the distance z from the beam waist *)

w[z_, q_]:=Sqrt[λ ∗ Im[q]/π] ∗ Sqrt[1 + (z/Im[q])∧2];

(* d1: distance between collimator and first lens, d2: spacing between the two lenses, d3:
distance between lens and crystal surface, f1 and f2: focal lengths of first and second lens *)

Manipulate[

q1 = q0 + d1

q2 = q1/(−q1/f1 + 1);

q3 = q2 + d2;

q4 = q3/(−q3/f2 + 1);

q5 = q4 + d3;

Plot[{10∧6 ∗ Evaluate




w[z + Re[q0], q0] z < d1

w[z − d1 + Re[q2], q2] d1 < z < d1 + d2

w[z − d1− d2 + Re[q4], q4] d1 + d2 < z < d1 + d2 + d3 + 0.05

 ,
10∧6 ∗ w[−z + d1 + d2 + d3 + Re[qM], qM]}, {z, 0, d1 + d2 + d3 + 0.05},

PlotStyle→ {{Red,Thick}, {Blue,Thick}} ] ,

(* selectable values for d and f *)

{d1, 0.01, 0.7}, {d2, 0.01, 0.7}, {d3, 0.01, 0.7}, {f1, {0.010, 0.012, 0.015, 0.020, 0.025, 0.0254,

0.030, 0.035, 0.040,−0.050, 0.060, 0.075, 0.085, 0.090, 0.100, 0.125, 0.150, 0.175, 0.200, 0.250,

0.300, 0.400, 0.500, 0.750, 0.1000}}, {f2, {0.010, 0.012, 0.015, 0.020, 0.025, 0.0254, 0.030,

0.035, 0.040, 0.050, 0.060, 0.075, 0.085, 0.090, 0.100, 0.125, 0.150, 0.175, 0.200, 0.250, 0.300,

0.400, 0.500, 0.750, 0.1000}}]

(* Diagram window with adjustable parameters, to match the q-parameters graphically. Here,
the beam waist is plotted (in micrometres) as a function of the distance to the collimator (in
metres). The blue function denotes the theoretically optimal q-parameter, whereas the red line is
the current q-parameter of the actual beam to match. For the example of the 1000 nm beam, the
optimum telescope parameters are: f1=-50 mm, f2=100 mm, distance between collimator and
first lens d1=9.7 cm, lens spacing d2=13.9 cm and distance between second lens and crystal
surface d3=20.5 cm. *)
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– – – – Mathematica file BOTTOM – – – –
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Figure B.1: Diagram window with adjustable parameters as an example for non-matched q-
parameters. Blue: theoretically optimal q-parameter, Red: initial q-parameter of the beam to
match.
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