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Abstract

One of the challenges for quantum computing is the loss of coherence due to phase
randomization introduced by noise. For quantum computers based on ion traps,
coherence is limited by fluctuations in the magnetic field and by the linewidth of the
laser used for qubit operations. This thesis is concerned with enhancing coherence
by improving magnetic field stability with permanent magnets and building a test
setup for reducing broadening of laser linewidth from optical fibers.

Previously coils were used to generate the magnetic field. Their stability is
limited by the noise of the current drives. The coils have been replaced with per-
manent magnets in order to improve magnetic field stability. Two frames holding
the permanent magnets in place were designed, 3D printed and then installed in the
experiment. After installation Ramsey measurements were used to obtain 1/

√
e

coherence times of τsens = (489± 21) µs and τinsens = (1540± 80) µs for a more and
less sensitive transition to magnetic fields between Zeeman sublevels of the qubit
states, compared to τsens = (491± 25) µs and τinsens = (1254± 53) µs when using
the coils. From these results we were able to infer the root-mean-square (RMS)
of the magnetic field and laser frequency fluctuations to be, both when the coils

and permanent magnets were in use,
√

∆B2 ≈ 110 µG and
√

∆ω2/2π ≈ 100 Hz,
respectively. We were not able to improve coherence times, most likely due to the
lack of magnetic field shielding from other noise sources in and outside the lab.

Optical fibers can broaden the linewidth of a laser by picking up environmen-
tal disturbances, such as vibrations and thermal fluctuations. A test setup for
canceling the broadening of laser linewidth from fibers was built using active com-
pensation. It has been tested by artificially introducing noise into the laser via the
fiber, and we were able to successfully cancel the noise up to a few kHz.
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Chapter 1

Introduction

Quantum computers have been a subject of great interest over the last few decades.
They are based on the idea of performing computations using the principles of
quantum mechanics, which is a radically different approach then for classical com-
puters. Many different architectures [1] have been proposed, ion traps being one
of the more promising ones. By trapping ions in ultrahigh vacuum and manipu-
lating their electronic state with lasers, quantum computations can be performed.
The degeneracy of the electronic states are lifted using a magnetic field. In our
experiment, we trap strontium ions of isotope 88Sr+ as described in section 2.2.

Most quantum computing architectures are based on two-level quantum sys-
tems called qubits, for which the states are denoted |0〉 and |1〉 and are used to
represent bits of information with value 0 and 1, in analogue to classical computers.
Since a qubit is a quantum system, it also possible to prepare superposition states
of |0〉 and |1〉, and multiple qubits can also be entangled. These are important
properties for quantum computing, they are the differentiating factors from clas-
sical computers. For trapped ion qubits, |0〉 and |1〉 are encoded using electronic
states.

Quantum systems are sensitive to the environment. In particular, noise can
have a significant detrimental effect on quantum computations, which depends
on a well defined phase between |0〉 and |1〉. Noise can introduce random phase
between |0〉 and |1〉, a phenomenon known as dephasing, and as a result, the system
gradually loses information about the superposition states. This is one type of
decoherence in a quantum system. The timescale over which a well defined phase
between |0〉 and |1〉 can be maintained is called the coherence time. Different qubit
architectures may differ in what causes decoherence, but the underlying principle
of dephasing is the same. For ion traps, two prominent sources of decoherence
are magnetic field fluctuations and the linewidth of the laser manipulating the
qubit states. Improving magnetic field stability and reducing the laser linewidth
to improve coherence times are the topic of this thesis.
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Previously, before this thesis, pairs of coils were used to generate the magnetic
field of the ion trap. Due to fluctuations in current, the magnetic field may fluc-
tuate. For this reason, we have replaced the coils with permanent magnets, as
this has been shown to improve coherence times in other groups[2]. However, it
should be noted that without a magnetic field shielding to protect against external
magnetic field noise we do not expect a large, if any, improvement in coherence
times.

Additionally the fiber used to transport laser light to the experiment can in-
troduce phase noise into the laser light due to vibrations or thermal fluctuations.
This has been successfully handled before with fiber noise cancellation, and so we
have built a test setup as a first step to implement this in the experiment.

The thesis follows the following structure.

• In chapter 2 we provide a brief overview of quantum computing with trapped
ions.

• Permanent magnets : Chapter 3 is dedicated to developing a theoretical
model for the permanent magnets. This model is used in chapter 4, where
we describe the design and manufacture of a pair of frames for permanent
magnets. In chapter 5 we characterize the magnetic field generated by the
magnets. The installation of the permanent magnets as well as the results
are described and presented in 6, followed by a discussion in chapter 7.

• Fiber noise cancellation: The test setup for fiber noise cancellation is de-
scribed and then characterized in chapters 8 and 9. The results are then
discussed in chapter 10.

• The summary and outlook can be found in chapter 11.
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Chapter 2

Quantum computing using
trapped ions

This chapter describes the basics on how to use trapped ions for quantum compu-
tation, as well as some limiting factors that need to be overcome.

2.1 Quantum computation

The smallest unit of information that can be encoded in a classical computer is
that of a bit, which can be either 0 or 1. More complex information, such as
numbers or funny pet videos, are constructed by multiple bits. For a quantum
computer, the equivalent[1] to the bit is the quantum bit, or qubit. A qubit is a
two level quantum system, where each level is used to store |0〉 or |1〉. These states
are the basis of the qubit state. A general state |ψ〉 of a qubit is a superposition
of |0〉 and |1〉

|ψ〉 = c0|0〉+ c1|1〉 (2.1)

where c0 and c1 are complex numbers subject to the normalization condition
|c0|2 + |c1|2 = 1.

For multiple qubits the general state |Φ〉 becomes more complicated due to
entanglement. With N qubits |Φ〉 is then a superposition of product states[3],
which are just tensor products between the individual qubit states. This include
entangled states, which cannot be written as product states but can be written as
superpositions of product states. As an example, for 2 qubits the general state is

|Φ〉 = c00|0〉 ⊗ |0〉+ c01|0〉 ⊗ |1〉+ c10|1〉 ⊗ |0〉+ c11|1〉 ⊗ |1〉. (2.2)

where cij are normalized complex coefficients for which
∑

i,j |cij|2 = 1. For a N

qubit state there are 2N product states and the general state |Φ〉 can be constructed
by a linear combination of these.
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Entangled states have no classical equivalent, and cannot be efficiently repre-
sented on a classical computer. This is because the number of terms required to
store a N qubit state on a classical computer scales exponentially as 2N . For algo-
rithms and computational problems that take advantage of entanglement and also
superposition states, it is possible to achieve an exponential speedup compared to
classical computers. Examples include Shor’s algorithm, but also simulations of
quantum systems.

2.1.1 Dephasing and coherence

Quantum computing relies on coherent superposition states, which means that
there must be a well defined amplitude and phase relation between c0 and c1, and
thus |0〉 and |1〉, in equation (2.1). The amplitude and phase relation between c0

and c1 deteriorate over time due to various processes. Of particular importance to
this thesis are dephasing processes1 which introduces a random phase difference φ
between |0〉 and |1〉 which accumulates over time while preserving population and
energy. We can write this as

|ψ〉 = c0|0〉+ eiφc1|1〉. (2.3)

Dephasing can be caused by phase noise affecting the system and is problematic
since it means we lose information about the relative phase between |0〉 and |1〉.

This can be illustrated by considering the Bloch sphere, as in figure2 2.1 for
a qubit state (|0〉 + |1〉)/

√
2. Dephasing causes us to lose track of the azimuthal

position of the Bloch vector in the equator. Since φ accumulates over time, more
and more information is lost as time passes until we finally reach a situation where
we have no information left about the relative phase. We then cannot predict
where the Bloch vector ends up after a series of qubit operations. Practically this
means that the system evolves from a coherent superposition state into a statistical
mixture. Experimentally this means that each time a series of qubit operations
is performed, the final state will be different. How different just depends on how
much random phase φ has been accumulated.

The characteristic timescale over which this happens is known as the coherence
time, and the loss of coherence is typically referred to as decoherence. It should
be noted that decoherence refers to any loss of coherence, and not just loss of
coherence due to dephasing.

Longer coherence times means we can perform longer quantum computations
before we lose too much information due to decoherence. To calculate coherence
times a noise model is needed, such as the one derived in section 6.3.

1One example of a different kind of decoherence process is population decay.
2The Python package QuTIP was used to plot these and all other Bloch spheres in this thesis.
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(a)
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Figure 2.1: A qubit on the Bloch sphere, first (a) initialized to (|0〉 + |1〉)/
√

2 at
time t = 0 and then left alone. Due to noise it accumulates a random phase φ, so
(b) at time t the qubit state is (|0〉+ eiφ|1〉)/

√
2. This is shown as a spread of the

Bloch vector, since the accumulated φ will be different every time the experiment
is repeated. For longer times t, more phase can accumulate and thus we begin to
lose track of the azimuthal position of the Bloch vector.

2.2 Trapped ions qubits

In our experiment, we represent qubits by encoding |0〉 and |1〉 using Zeeman
sublevels of the metastable3 4D5/2 and and the ground state 5S1/2 of strontium
88Sr+ ions. A level scheme can be found in figure 2.3. The ions, each of which
represent a single qubit, are stored in a linear Paul trap[4][5]. The ions can then
be manipulated using resonant laser pulses from a 674 nm laser, which can be used
to implement quantum gate operations.

A linear Paul trap uses an oscillating electric quadrupole field generated by 4
electrodes parallel to a common trap axis z to keep ions trapped for long periods
of time. This is depicted in figure 2.2(a). One pair of the parallel electrodes are
at a DC voltage VDC while the other has an oscillating voltage VRF . This creates
an effective electric potential confining ions to the trap axis[4], typically in form
of a 1D ion string. End cap electrodes aligned with the trap axis confines the
ions in axial direction and allows adjustment of ion positions. Since collisions with
atoms in air are detrimental, the ion trap is required to be in ultra-high vacuum
conditions and is thus placed in a vacuum vessel. For details about the ion trap
and vacuum vessel, see the master thesis of Fabian Pokorny[6].

The magnetic field that splits the 4D5/2 and 5S1/2 into Zeeman sublevels were
previously generated by a pair of coils on either side of the vacuum vessel, as

3Metastable simply means that it decays slowly enough that it is effectively stable. The sponta-
neous lifetime of the 4D5/2 level is τ = 0.45 s.
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Figure 2.2: Schematic (a) of the linear Paul trap, where two electrodes oscillate
with an AC voltage VRF , while the other two as well as the end cap electrodes
are kept at DC levels VDC and Vcap, respectively. Trapped ions are sketched as
dots. (b) Schematic of the trap inside the vacuum vessel, with a magnetic field
along the z-axis generated by the coils. The compensation coils generate a weak
magnetic field along the y-axis to cancel constant external fields. An additional
pair of compensation coils cancels the DC magnetic field along the x-axis, but are
not shown here.

depicted in figure 2.2(b). Two additional coil pairs, aligned with the x- and y-axis,
are used to compensate for constant external magnetic field components. They
generate much weaker magnetic fields. In this thesis they are called compensation
coils.

Trapped ion qubits are promising due to being well controlled quantum sys-
tems. Additionally they are identical, free from imperfections introduced in man-
made qubits during manufacturing.

2.2.1 Dephasing and improving coherence times

As discussed in section 2.1.1, phase noise affecting the system can cause dephasing
and loss of coherence. In the case of quantum computation with ion traps, two well
known sources of dephasing are magnetic field fluctuations and laser phase noise
introduced by optical fibers, also known as fiber noise, for the qubit transition.

We can model the effects of the phase noise as phase flip operations[1], using
a time dependent detuning in the Hamiltonian[7] Ĥnoise(t) ∝ ∆E(t)σ̂z. Here
∆E(t) represents the energy fluctuation corresponding to the phase noise and
the Pauli operator σ̂z the phase flip operation. For magnetic field fluctuations
∆B, the Zeeman effect introduces an energy fluctuation ∆E(t). In case of laser
phase noise, phase fluctuations affects the qubit operations and can be modeled as
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Figure 2.3: Energy level diagram of strontium. The 5S1/2 state is used to encode
|1〉 while 4D5/2 encodes |0〉. The 5S1/2 ↔ 4D5/2 transition is addressed with the
674 nm qubit laser. Other relevant energy levels include 5P1/2 and 4D3/2, which
are used for state detection. See section 6.2.2 for more information.

random frequency detunings ∆ω(t). Then the corresponding energy fluctuation is
∆E(t) = ~∆ω(t). Both of these effects thus affect the system via Ĥnoise(t). This
is described in more detail in section 6.3.

Magnetic field fluctuations can be caused by surrounding electronics. The coils
generating the quantization magnetic fields are no exceptions, since small current
fluctuations cause magnetic field fluctuations that can limit coherence times. By
replacing these coils with permanent magnets[2], other groups have realized more
stable magnetic fields and coherence times have increased as a result. They also
found that magnetic field shielding is required for larger then marginal gains in
coherence times, since magnetic fields from other electronics or labs can contribute
significantly to decoherence. Installation of such a shield is beyond the scope of
this thesis.

No laser is perfectly monochromatic, but just has a very narrow linewidth
compared to other light sources. The linewidth of the laser depends on many
factors, such as temperature, acoustic noise or even the Schawlow-Townes limit of
laser linewidth. Most importantly for this thesis, the phase noise introduced by
optical fibers have a broadening effect of the laser linewidth.

The phase noise of the 674 nm qubit laser comes from two fibers. The vacuum
vessel containing the ion trap and the 674 nm laser are on different optical tables,
and a 10 m long fiber is used to transport the laser light to the right optical table.
Furthermore, the laser frequency is locked to an optical reference cavity using a
Pound-Drever-Hall lock[8]. This requires the optical cavity to be stored in a very
stable temperature and vibration free environment, and it is thus placed in a box
specifically built with this in mind. A 20 m long fiber is used to transport the light
from the laser to the cavity. Both of these fiber contribute to introduction of phase
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noise. To compensate for this, active cancellation schemes have been developed[9],
commonly referred to as fiber noise cancellation. For this thesis a test setup for
fiber noise cancellation has been developed.
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Chapter 3

Theory for permanent magnets

3.1 Introduction

In the trapped ion experiment two coils were previously used to generate a ho-
mogeneous magnetic field. We would like to generate a low noise magnetic field
using permanent magnets. The magnetic field should be directed along the trap
axis and be as homogeneous as possible at the region where the ions reside. This
can be achieved by having two frames of a suitable material holding the magnets
in a circular configuration at a specific radius. Each of these frames will be placed
on either side of the vacuum vessel containing the ion trap, replacing the coils and
aligned so they are centered on the trap axis. In other words, they are in coaxial
geometry.

In this chapter we will describe the underlying theory, which motivates the
chosen separation and radius of these frames.

3.2 Magnets as magnetic dipoles

In order to calculate the magnetic field generated at and around the position of
the trapped ions, we assume that the magnets are far away from the ion trap
and that their spatial dimensions are small. We also assume that the surrounding
environment will not affect the magnetic field to a large degree. For example, this
assumption entails the absence of metals that are magnetic or can be magnetized
easily. This allows us to approximate the permanent magnets as magnetic dipoles.

Thus let us first consider the magnetic field ~Bd at a point P with position
~rp due to a magnetic dipole at ~rd. The magnetic field at ~rp will depend on the

relative position ~rp− ~rd to the dipole, as illustrated in figure 3.1. ~Bd is then given

9



~rd

~rp − ~rd

~rp

~µ

~Bd

O

Dipole

P

Figure 3.1: The magnetic field ~Bd at point P due to a magnetic dipole at ~rd
depends on the relative position ~rp − ~rd and the magnetic dipole moment ~µ.

as [10][11]

~Bd(~r, ~rd) =
µ0

4π|~rp − ~rd|3
(

3(~rp − ~rd)(~µ · (~rp − ~rd))
|~rp − ~rd|2

− ~µ
)

(3.1)

where µ0 is the permeability of free space and ~µ is the magnetic dipole moment of
the dipole.

The magnitude µ of the magnetic moment depends on the volume V of a
magnet as well as its remanence1 Br as[11]

µ =
V Br

µ0

. (3.2)

While we are approximating the magnets as magnetic dipoles which have no spatial
extent, we still use equation (3.2) to obtain their magnetic moment µ.

Now, if we have N dipoles instead of a single one, the total magnetic field at an
arbitrary position is just the sum of the contributions from each dipole. Denoting
the position and magnetic moment of the i:th dipole as ~rd,i and ~µi, the magnetic
field at ~rp is given by

~B(~rp) =
µ0

4π

N∑
i=1

1

|~rp − ~rd,i|3
(

3(~rp − ~rd,i)(~µi · (~rp − ~rd,i))
|~rp − ~rd,i|2

− ~µi
)
. (3.3)

3.3 Generated axial magnetic field

Let us consider a pair of magnet holders, placed symmetrically along a common
central axis z, in coaxial geometry. The magnet holders are separated by a distance
∆, and the magnets themselves are placed at a radius R. All of the magnets are
oriented the same direction, such that their magnetic moment ~µ is parallel to the

1See [12] for the definition of remanence.
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z-axis. We choose the mid-point between the holders on the z-axis to be the origin.
Each magnet is approximated as a dipole. Since all the magnets are oriented along
the z-axis, the magnetic moment itself is ~µ = µẑ, where µ can be obtained from
equation (3.2).

Origin

z

y

R
∆/2

~µ

Magnet 1

R
~µ

Magnet 2

R
∆/2

~µ

Magnet 3

R
~µ

Magnet 4

Figure 3.2: Simplified view of the magnet holders, with only four magnets.

The ions will be aligned along the z-axis, and thus we are only interested in
the magnetic field along this axis. In order to simplify the analysis we will only
consider a pair of magnets from each holder, residing in the yz-plane as illustrated
in figure 3.2. Since the other magnets will just add more contributions, using all
the magnets gives a result proportional to the four-magnet result as long as they
are placed pairwise like in this simplified case.

Equation (3.1) yields the magnetic field for an arbitrary point at ~rp due to
magnet i at position ~rd,i. For our purposes we want to know the magnetic field
along the z-axis, and thus we choose ~rp = zẑ. The magnet positions ~rd,i can
be inferred from figure 3.2 to be ~rd,1 = (−∆/2)ẑ + Rŷ, ~rd,2 = (−∆/2)ẑ − Rŷ,
~rd,3 = (∆/2)ẑ + Rŷ and ~rd,4 = (∆/2)ẑ − Rŷ. The relative positions ~ri = ~rp − ~rd,i
from the magnets to the chosen point are then

~r1 = zẑ − ((−∆/2)ẑ +Rŷ) = (z + ∆/2)ẑ −Rŷ, (3.4)

~r2 = zẑ − ((−∆/2)ẑ −Rŷ) = (z + ∆/2)ẑ +Rŷ, (3.5)

~r3 = zẑ − ((∆/2)ẑ +Rŷ) = (z −∆/2)ẑ −Rŷ, (3.6)

~r4 = zẑ − ((∆/2)ẑ −Rŷ) = (z −∆/2)ẑ +Rŷ. (3.7)

From these equations we can also see that magnets 1 and 2 are always at the same
distance to the point z, since |~r1| = |~r2|. Similarly for magnets 3 and 4 we have
|~r3| = |~r4|. As such we can define the corresponding distances rL and rR as

rL = |~r1| = |~r2| =
√

(z + ∆/2)2 +R2, (3.8)

rR = |~r3| = |~r4| =
√

(z −∆/2)2 +R2. (3.9)
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To obtain the total magnetic field ~B(z) along the z-axis we will add each holder
individually.

First we consider the contribution ~BL from magnets 1 and 2, to the left in
figure 3.2. Using equation (3.3) and the magnetic moment ~µ = µẑ we obtain

~BL =
µ0µ

4πr3
L

(
3

r2
L

[~r1(ẑ · ~r1) + ~r2(ẑ · ~r2)]− 2ẑ

)
.

Using equations (3.4) and (3.5) we find

~r1(ẑ · ~r1) + ~r2(ẑ · ~r2) = 2(z + ∆/2)2ẑ.

As we can see the components along the y-axis will cancel leaving us with only a
component along the z-axis. Thus ~BL becomes

~BL =
µ0µ

2πr3
L

(
3(z + ∆/2)2

r2
L

− 1

)
ẑ

The value of ~BL at the common axis is shown in figure 3.3. We can here see an
important difference from using coils, and that is that the magnetic field changes
direction close to the magnet pair.

−4 −2 0 2 4

Position z / R

−10

−5

0

B
z

/
µ

0
µ
R
−

3

Figure 3.3: The magnetic field of a single holder.

Now consider the magnetic field contribution ~BR due to magnets 3 and 4, on
the holder to the right. We can use the same approach, but for magnets 3 and 4
as well as rR instead of rL. Doing this yields that ~BR(z) = ~BL(−z), which is not

surprising since we have only shifted the holder position compared to ~BL.
The total magnetic field ~B = ~BL + ~BR becomes

~B =
µ0µ

2π

[
1

r3
L

(
3(z + ∆/2)2

r2
L

− 1

)
+

1

r3
R

(
3(z −∆/2)2

r2
R

− 1

)]
ẑ (3.10)

where rL =
√

(z + ∆/2)2 +R2 and rR =
√

(z −∆/2)2 +R2. We have also used
that (z −∆/2)2 = (−z + ∆/2)2 to write this slightly more compactly.
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This is, however, only for four magnets. Practically we would not want 4
magnets due to symmetry issues. The results for N magnets can, however, be
derived from this simplified case as long we can place these magnets pairwise like
in the four magnet case. Thus for N magnets we get

~B =
Nµ0µ

8π

[
1

r3
L

(
3(z + ∆/2)2

r2
L

− 1

)
+

1

r3
R

(
3(z −∆/2)2

r2
R

− 1

)]
ẑ (3.11)

3.4 Helmholtz-like configuration

If we have a string of N ions in the ion trap, located at the center position, it is
desirable that all N ions experience the same magnetic field. For a pair of coils
this can be achieved using the Helmholtz configuration, where the radius R of the
coils equals their separation ∆. Such a configuration yields a remarkably constant
magnetic field between the coils. This is because at the center position between
the coils, the inflection points of their magnetic fields overlap. This result can
be obtained[12] by making a Taylor expansion around the central position, where
z = 0. The symmetry of the setup will cause the odd terms to cancel. By choosing
R = ∆, we also cancel the second order term. This is what gives us a Helmholtz
configuration for a pair of coils.

Now we consider the case with permanent magnets instead of coils and repeat
the same procedure. We thus make a Taylor expansion of the magnetic field
given in equation (3.10) around the center position at z = 0. Since ~B only has a
component along the z axis, we only consider this component Bz. The terms of
the Taylor expansion are

Bz(z) = Bz(0) + z
dBz

dz

∣∣∣∣
z=0

+
z2

2

d2Bz

dz2

∣∣∣∣
z=0

+
z3

6

d3Bz

dz3

∣∣∣∣
z=0

+O(z4) (3.12)

where O(z4) represents all higher order terms. The odd order terms vanish due to
symmetry, leaving us with the second order term as the first non-constant term.
Hence we seek a relationship between R and ∆ that solves d2Bz/dz

2|z=0 = 0 to
get a Helmholtz-like configuration for permanent magnets. d2Bz/dz

2|z=0 is given
by

d2Bz

dz2

∣∣∣∣
z=0

=
3µ0µ

32π
(
R2 + ∆2

4

)5/2

(
35∆4(

R2 + ∆2

4

)2 −
120∆2

R2 + ∆2

4

+ 48

)
(3.13)

We want to find ∆ in terms of R such that

3µ0µ

4π

(
35∆4

8
(
R2 + ∆2

4

)9/2
− 15∆2(

R2 + ∆2

4

)7/2
+

6(
R2 + ∆2

4

)5/2

)
= 0. (3.14)
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There are 4 solutions to this equation. Of these, the two positive solutions are

∆± = R

√
6±
√

30. (3.15)

The other two solutions are −∆± and thus does not contribute any more informa-
tion. These negative solutions just switch the places of the holders.

The separations ∆± corresponds to when the two inflection points of the mag-
netic fields ~BL and ~BR of the left and right magnet holder overlap at the center
position. The solutions ∆± are shown in figure 3.4, where equation (3.11) was
used to calculate the axial magnetic field Bz. We can see that the two solutions
correspond to a small separation and a large separation. The larger separation
∆+ seems to also give a wider region where the axial magnetic field Bz is flat,
compared to the smaller separation ∆−. Do note that the position in figure 3.4 is
expressed in units of R while Bz is in units of µ0µ/R

3.
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Figure 3.4: Axial magnetic field Bz for the two magnet holder separations

∆± = R
√

6±
√

30, where R is the radial magnet position.

Now we consider what happens when the separation is either too large or too
small compared to either of ∆±. The axial magnetic field Bz will have undesired
magnetic field curvatures. To illustrate this, figure 3.5 shows Bz for a separation
a bit larger and smaller then ∆+. As previously, Bz was obtained from equation
(3.11). We can see that a larger separation gives a local minima at z = 0, while
a smaller separation gives a local maximum. In particular, the magnetic field
changes faster then before with a quadratic dependence around z = 0.

3.5 Inhomogeneities in the xy-plane

Since we are using a finite number of discrete magnets the generated magnetic
field might have undesired inhomogeneities. For this reason, many magnets are
preferable to few magnets. Let us illustrate this now, with a couple of examples.
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Figure 3.5: The axial magnetic field Bz when the separation is (a) too large or (b)
too small compared to ∆+ to give a Helmholtz-like configuration.
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Figure 3.6: B-field amplitude in the xy-plane for (a) two, (b) three, (c) four and
(d) 20 magnets per magnet ring. The B-field amplitude is normalized so the center
position has value 1. Red indicates that the magnetic field strength is larger then
the center position, and blue indicates it is smaller.

Suppose, for instance, we have two or three magnets per magnet ring. These
magnets are placed at a radial distance to the z axis of R, and the rings are

separated by ∆ = R
√

6 +
√

30. We can then calculate the amplitude of the B-
field in the xy-plane at z = 0 with equation (3.3). Here the x-axis is perpendicular
to both the y-axis and the z-axis. The position of the n:th magnet can be obtained
as x = R cos θn, y = R sin θn and z = ±∆/2 depending on the magnet holder. If
there are a total of N magnets then θn = 2π(n− 1)/N . The resulting normalized
B-field amplitude in the xy-plane is shown in figure 3.6 for two, three, four and
20 magnets.

We can illustrate the homogeneity by considering the B-field amplitude at a
radial distance rc from the center position in the xy-plane. In other words, we use
equation (3.3) to calculate the magnetic field strength at positions x = rc cos θ, y =
rc sin θ, z = 0 for a large number of angles θ. The fractional variation (B−〈B〉)/B
of the B-field amplitude B = | ~B| is shown in figure 3.7(a) as a function of θ with
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Figure 3.7: The (a) fractional variation (B − 〈B〉)/〈B〉 as a function of angular
position at a radius rc = 3 cm for N = 2, 3, 4 magnets. The (b) oscillation contrast
of the fractional variation as a function of magnet count, for rc = 1, 2, 3 cm.

rc = R/5 and for N = 2, 3, 4 magnets. There is an oscillating behaviour where
the B-field amplitude is largest close to the magnets and smallest between two
magnets. We also see that the oscillation contrast decreases with more magnets,
indicating that the magnetic field becomes more homogeneous with more magnets.
The contrast of the fractional variation is shown in figure 3.7(b) as a function of
the number of magnets N for rc = R/5, R/10, R/20. It decays exponentially as the
number of magnets increases. We can also see that this exponential decay is faster
for smaller rc, indicating that the magnetic field also becomes more homogeneous
closer to the center position. The exponential decay stops at ≈ 10−15 due to
numerical issues with the simulation.
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Chapter 4

Magnets and magnet holders

This chapter describes the design and manufacture of a pair of frames for the
permanent magnets, as well as what kind of permanent magnets were chosen.

4.1 Permanent magnets

The magnets we used were Samarium-Cobalt magnets, specifically Sm2Co17. This
material was chosen since it has already been used by other groups, who obtained
good results [2], and for its good temperature stability of −0.03 %/K. The mag-
nets themselves are cylindrical with a diameter of 4 mm and a length of 6 mm.
According to the manufacturer1 they should have a remanence of Br ≥ 1 T. These
magnets are quite small and we need many of them to generate the magnetic field
used in the experiment, however, they were chosen with the idea that a larger
number of magnets would create a more homogeneous magnetic field.

4.2 Design constraints for the magnet holders

At either side of the vacuum vessel there is a few cm of space where the magnet
holders can be physically fit before other parts of the experimental setup get in
the way. The coils could be separated by 200 mm to 250 mm. Due to the spatial
constraints a Helmholtz configuration for coils was not possible, since the radii of
the coils would be too large for them to fit amongst the surrounding equipment.

For the magnet holders, we chose to have a separation of 250 mm, which ac-
cording to equation (3.15) means the magnets should be placed at a radius of
≈ 73.8 mm for a Helmholtz-like configuration.

1IBS Magnet.
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The magnetic field generated by the coils was ≈ 3.6 G at the position of the
ion in the ion trap, with a current of I ∼ 1 A. It was desirable to have a similar
or slightly lower magnetic field for efficient Doppler cooling. From equation (3.2),
assuming the magnet dimensions given above, a remanence of Br = 1 T, and
equation (3.3) we can calculate that for 80 magnets per holder we should get
about ≈ 3.2 G at the center position.

4.3 Magnet holder design

To hold the magnets in place a pair of magnet holders, illustrated in figure 4.1,
was designed to be fitted on the sides of the vacuum chamber containing the ion
trap. They are mounted at the same place as the coils they replace.

(a)

6.4

40

155

73.8

140

(b)

Figure 4.1: The CAD drawing of the magnet holders, both (a) with and (b) without
the dimensions marked. The dimensions are in mm.

The magnet holders have a diameter of 155 mm, and a thickness of 7 mm. At a
radial distance of 73.8 mm from the center there are 90 holes in which the magnets
can be placed, which included 10 extra holes to allow some fine-tuning of the
magnetic field strength if necessary. These holes have a diameter of 4.2 mm and
a depth of 6 mm. At the end of these holes we designed narrower holes 3 mm in
diameter, to make it easier to remove the magnets if needed. The dimensions of
the holders are shown in figure 4.1(a) and the dimensions of the magnet holes are
shown in figure 4.2(b).

The inner region of the holders are 3 mm thinner for easier mounting. At the
center there is a large hole 40 mm in diameter to allow optical access for the on-
axial laser beams. The holders are mounted using 6 screw holes around the center
hole.
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(a) (b)

1

3

Figure 4.2: Cut through (a) of the magnet holder, as well as (b) a detailed view
of the magnet holders. All given dimensions are in mm.

Keep in mind that to avoid inhomogeneities and non-axial components in the
magnetic field the magnets should be inserted pairwise so each magnet has another
magnet on the other side of the holder. They should also be evenly distributed over
the holders. For the 80 magnets we left every 9:th magnet hole empty, which should
create a fairly homogeneous magnetic field. Imperfections in holder construction,
position and orientation can naturally introduce inhomogeneities or non-axial com-
ponents in the magnetic field.

4.4 Manufacturing the magnet holders

The magnet holders were 3D printed using PLA plastic. The reasons 3D printing
was chosen were two-fold. First reason was to enable faster design and testing
of the magnet holders. Second, this technique has been implemented successfully
by the ion trap group in Berkeley [13] and appears to have worked well for them,
so it may be a cheaper and faster way to replace the coils with permanent mag-
nets compared to manufacturing these holders from something like aluminium.
Aluminium, however, may provide better structural and thermal stability.

For each holder, the magnets were inserted so their north and south poles were
all pointing in the same direction. When put on the vacuum vessel the holders
would also be placed so their north and south poles points in the same direction.
With the right separation and alignment this should generate a Helmholtz-like
magnetic field. The resulting magnet holders with their magnets inserted are
shown in figure 4.3. To make it easier to see which holder is which, the holders
were labeled as holders 1 and 2.

Due to imperfections in manufacturing, some of the magnets were hard to
insert while others had to be glued to stay in their holes. Additionally, some of
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Figure 4.3: The magnet holders with 80 magnets inserted.

the magnets ended up tilted outwards at a slight angle. This was not the case for
all magnets, as can be seen in figure 4.4.

(a) (b)

Figure 4.4: Tilted (a) and untilted (b) magnets in one of the magnet holders.
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Chapter 5

Magnetic field characterization

Before installing the permanent magnets around the ion trap, their magnetic field
was characterized in a test setup. This was to check if the magnetic field generated
by the permanent magnets had desirable properties. It was also intended to test
the theory developed in chapter 3. This chapter describes the experimental setup
used to characterize the magnetic field and presents the results.

5.1 Experimental setup

Hall probe

Holder 1 Holder 2

Axial
Transverse

y

x
z

Figure 5.1: Illustration of the Hall probe placed between the magnet holders. The
arrows marked axial and transverse shows the direction the Hall probe moves
during the two types of measurements.

To characterize the magnetic field we placed the magnet holders in coaxial ge-
ometry and used a Hall probe1 to measure the magnetic field strength between

1HU-ST1-184605 from Magnet-Physik. Computer controlled via USB.
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them, as illustrated in figure 5.1. Two types of measurements were performed:
Axial measurements, where the Hall probe was moved along the z axis, and trans-
verse measurements, where it was moved along the x-axis. Due to symmetry we
assumed the x-axis to be sufficient for the transverse measurements.

The Hall probe measures the magnetic field strength along one direction. It has
a resolution of 0.1 G, an accuracy of 2 %. We took 100 measurements per position.
Since the Hall probe only measures one component of the magnetic field, we would
have to rotate it to the right angle 90◦ and repeat the measurements for each
component we were interested in. From this data we calculated the mean and used
the standard deviation as uncertainty. Since multiple datasets would be combines
we would use error propagation [14] to determine the resulting uncertainty.

The positions for these measurements were read directly from the optical rail,
with an uncertainty of δz = ±2 mm. To compare with theory we would estimate
a midpoint z0 between the holders, with an uncertainty of δz0 = ±1 cm.

5.1.1 Axial characterization setup

For the axial measurements, the magnet holders were placed on platforms on an
optical rail, separated by ∆ = (25.0± 0.2) cm. The Hall probe was attached
to a mobile translation stage between the magnet holders. It could be moved
along the axial direction. Three smaller translation stages on the mobile platform
allowed fine tuning the Hall probe position. This setup is shown in figure 5.2. We
only measured the z-component of the magnetic field in this case. With proper
alignment the other components should cancel.

Figure 5.2: Experiment setup for axial characterization of the magnetic field.
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5.1.2 Transverse characterization setup

For the transverse measurements, we would change the setup so the optical rail
was aligned with the x-axis instead of the z-axis. This is shown in figure 5.3. In
order to measure all components of the magnetic field, we mounted the Hall probe
in two different ways, as depicted in figure 5.3.

(a) (b)

Figure 5.3: Experimental setup for transverse measurements of the magnetic field.
To allow measurement of all components, the setup for holding the Hall probe in
place was different for (a) measuring the x-component compared to (b) measuring
the y- and z-components.

5.1.3 Measuring and correcting for the background

For all these measurements, we characterized the magnetic background by mea-
suring a few points with the magnet holders removed and assumed the field to be
linear. We would fit2 a first order polynomial

Bbkg(z) ≈ az + b. (5.1)

to the data to approximate the background Bbkg(z). Subtracting the background
from the magnetic field then yields the magnetic field generated by the permanent
magnets as

Bmag(z) = Bmeas(z)−Bbkg(z). (5.2)

Uncertainties could then be calculated using error propagation.

2The fit was done using a non-linear least squares method, via the curve fit function in the
Python package scipy.optimize. We used scipy version 0.19.1.
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5.2 Axial magnetic field characterization

The axial characterization was done for a Helmholtz-like configuration with a sep-
aration of ∆ = (25.0± 0.2) cm and for two non-Helmholtz-like configurations with
∆ = (20± 1) cm and ∆ = (33± 1) cm.

5.2.1 Helmholtz-like configuration

The results of the axial characterization when the magnet holder separation was
in a Helmholtz-like configuration with ∆ = (25.0± 0.2) cm is shown in figure 5.4.
To compare this to what we would expect from a Helmholtz-like configuration, we
can consider equation (3.12). In the Helmholtz-like configuration, all non-constant
terms lower then the 4:th order cancel. Therefore we also show a fit to a 4:th degree
polynomial

B(z) ≈ B0 +B4(z − z0)4 (5.3)

where B0 is the magnetic field at z = 0, B4 is the coefficient of the 4:th order term
and z0 is the center position. From the fit we get B0 = (3.125± 0.002) G, which
can be compared to the 3.2 G predicted by theory. Do note that the uncertainty
of 0.002 G comes from the fit. There is also an additional uncertainty of 0.1 G
imposed by the resolution of the Hall probe.
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Figure 5.4: Axial magnetic field strength Bz between the magnet holders.

The measured magnetic field strengths in figure 5.4 seems to be in reasonable
agreement with what we would expect. Any deviations fall within one error bar.
The uncertainty here is limited by the Hall probe resolution of 0.1 G.

5.2.2 Non-Helmholtz-like separations

The results of the measurements with separations ∆ = (20± 1) cm and ∆ =
(33± 1) cm are shown in figure 5.5, together with a fit of equation (3.11) to com-
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pare the results to predictions from theory.
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Figure 5.5: The magnetic field strength Bz when (a) the holder separation
∆ = (20± 1) cm is too small or (b) too large, ∆ = (33± 1) cm, for a Helmholtz-
like configuration, ∆ = ∆+ = 25 cm.

In particular we would rewrite equation (3.11) using a center position z0 and
a scaling factor P to

Bz = P

[
1

r3
L

(
3(z − z0 + ∆/2)2

r2
L

− 1

)
+

1

r3
R

(
3(z − z0 −∆/2)2

r2
R

− 1

)]
. (5.4)

Here rL =
√

(z − z0 + ∆/2)2 +R2 and rR =
√

(z − z0 −∆/2)2 +R2. The fitting
parameters were z0, P and ∆. The radial position R of the magnets was kept at
73.8 mm. By comparing P with equations (3.2) and (3.11) we can estimate the
remanence as

Br =
8πP

V N
(5.5)

where V is the volume of the magnets and N = 160 the total number of magnets.
From figure 5.5 we can see that the measured magnetic field strengths seems

to be in excellent agreement with what is expected from theory. For the smaller
separation we obtained from the fit that ∆small = (19.76± 0.02) cm, while from
the fit for the larger separation we got ∆large = (32.67± 0.02) cm. These are
close to the measured separations. Using equation (5.5) we got a remanence of
Br,small = (0.7954± 0.0009) T and Br,large = (0.7917± 0.0012) T for the smaller
and larger separation, respectively. The uncertainty came from the fit. These
values for Br are smaller then the Br ≥ 1 T provided by the company.
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5.3 Transverse characterization

The transverse characterization was done with the magnet holders in Helmholtz-
like configuration, separated by ∆ = (25.0± 0.2) cm. The results are shown in
figure 5.6, for each of the magnetic field components. As before we moved the Hall
probe along the x-axis, but over a larger region this time.
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Figure 5.6: The (a) x-, (b) y- and (c) z- components of the magnetic field when
moving the Hall probe along the x-axis.

For figures 5.6(a) and 5.6(b), if aligned properly we would expect these to be
evenly distributed around 0 G in magnetic field, but we do see a gradient. However,
for all values of Bx and By, 0 G lies within the error bars. The resolution of the Hall
probe as well as an uncertainty ∆θ in the Hall probe angle are the limiting factors
here. In figure 5.6(c) we can see something similar to the axial measurements in
section 5.2. Bz is remarkably flat around x = 0.

As mentioned above, a source of uncertainty was the angle of the Hall probe.
While great care was taken to ensure the Hall probe measured the right component,
it could still be at a small angle. Additionally, since By and Bz was measured before
the respective backgrounds, the angle could have changed when the background
was measured. We estimate that this might introduce an uncertainty of ∆θ ≈ 4◦

against the desired direction. Since Bx and By are small compared to Bz, we can
estimate the added uncertainty of Bz sin(∆θ). For Bz the uncertainty introduced
by ∆θ is small.

One source of uncertainty is that the Hall probe might not be perfectly aligned
with the x-, y- and z-axes. This could be an issue if the misalignments were large,
but due to how flat 5.6(c) is this is not likely the case.
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Chapter 6

Characterizing the magnetic field
with an ion

In this chapter we describe the installation of the magnet holders. We also char-
acterize the magnetic field using the ion and present the results.

6.1 Installation of permanent magnets around

the ion trap

To install the permanent magnets we replaced the coils with the magnet holders.
Due to the magnet holder design, it was possible to mount them on the vacuum
chamber without changing the mounting. Using washers and nuts as padding we
made sure the magnet holder separation was ≈ 25 cm, to get a Helmholtz-like
configuration. One of the installed magnet holders is shown in figure 6.1.

Initial measurements of the magnetic field strength using the ion gave us a
magnetic field strength of B ≈ 4.4 G. This was ≈ 1 G too large and is likely
the result of external magnetic field not taken into account by the calculations.
To solve this 20 magnets were removed so we used 60 instead of 80 magnets per
magnet holder. After this we measured B ≈ 3.46 G.

6.2 Measurements

The magnetic field was measured by spectroscopy of different Zeeman transitions,
while the magnetic field fluctuations were measured using qubit coherence.

To characterize the effects of the magnet holders, we carried out Ramsey mea-
surements for both the coils and the magnet holders. Two transitions between
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Figure 6.1: Picture of one of the installed magnet holders. It is mounted on the
side of the vacuum vessel containing the ion trap and has 60 magnets inserted.

Zeeman sublevels of 5S1/2 and 4D5/2 were used in these measurements. One sen-
sitive to magnetic fields and one relatively insensitive.

Sensitive: 5S1/2(mj = −1/2)↔ 4D5/2(mj = −5/2),

Insensitive: 5S1/2(mj = −1/2)↔ 4D5/2(mj = −1/2).

The transition to 4D5/2(mj = −5/2) is more sensitive to magnetic field fluctuations
then the transition to 4D5/2(mj = −1/2). This can be seen by considering the
energy shift ∆E of the levels due to the Zeeman effect. In particular, in an external
magnetic field B it can be shown that ∆E = ∆µB, where ∆µ is the sensitivity of
the transition to magnetic fields. From the Zeeman effect we can get ∆µ as

∆µ = (gDmj,D − gSmj,S)µB (6.1)

where gS ≈ 2 and gD ≈ 6/5 are the Landé g-factors of the 5S1/2 and 4D5(2

levels and mj,S and mj,D are the magnetic quantum numbers. µB is the Bohr
magneton. Thus for the sensitive and insensitive transition we can calculate ∆µsens
and ∆µinsens

∆µsens
h

≈ −2.80 MHz/G, (6.2)

∆µinsens
h

≈ 0.56 MHz/G. (6.3)
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We can see that the sensitive transition is shifted by a factor of 5 more then the
insensitive transition, and thus is affected more by fluctuations.

From equations (6.2) and (6.3) we can also see that the magnetic field gradient
is important, since a gradient means ions at different positions in the ion trap will
have their transitions shifted relative to each other. To characterize the magnetic
field gradient we measured the magnetic field strength using the ion at different
positions along the trap axis. The magnetic field strength was determined by
measuring the difference in resonance frequencies of the two Zeeman transitions.
Their frequency difference is due to the Zeeman effect and can thus be used to
calculate the magnetic field.

These measurements were done using the coils, before installing the permanent
magnets, as well as using the permanent magnets. We also did this both with and
without the compensation coils active. The measurements were synchronized to
the 50 Hz mains using a line trigger to improve coherence. Some measurements
were repeated without the line trigger to see its effect, but unless stated otherwise
the line trigger was on for the presented results.

6.2.1 Ramsey measurements

To measure coherence times, we performed Ramsey measurements [15] on the ion.
These consist of two resonant π/2-pulses of the 674 nm qubit laser separated by a
wait time twait. These pulses couple the Zeeman sub-levels of 5S1/2 and 4D5/2 on
either the sensitive or insensitive transition, used as the qubit states |1〉 and |0〉.
This is illustrated in figure 6.2.

π
2
-pulse π

2
-pulse

twait

t

Figure 6.2: Pulse sequences in a Ramsey experiment with wait time twait and its
effects on the Bloch vector. The first π/2-pulse rotates the Bloch vector from |1〉
to the equator. During the wait time noise fluctuations introduce a random phase
causing the Bloch vector to rotate around the equator. The second π/2-pulse then
rotates the Bloch vector up to |0〉 in the case of no noise, and close to |0〉 if noise is
present. This is the case for when the second π/2-pulse is in phase with the first.
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At the start of the Ramsey experiment the ion is prepared in the state |1〉.
A π/2-pulse is then applied, rotating the Bloch vector to the equator and thus
placing the ion in the superposition state (|0〉 + |1〉)/

√
2. The phase of the laser

field defines the axis of rotation, and by convention this will be the x-axis. The ion
is then left alone for a wait time twait, during which the laser intensity on the ion is
switched off1 and the state is free to evolve. Any noise or detuning from resonance
causes the Bloch vector to rotate and the qubit picks up a phase φ so its state
becomes (|0〉 + eiφ|1〉)/

√
2. The Bloch vector will thus rotate around the equator

in the Bloch sphere. A second π/2-pulse is then applied, with a relative phase ∆ϕ
to the first. ∆ϕ determines the rotation axis of the second pulse in the equatorial
plane, which will be at an angle ∆ϕ to the first rotation axis. After the second
π/2 pulse the final state is determined as described in section 6.2.2. By repeating
this many times, 100 times in the experiment, we can estimate the population
in 4D5/2. With noise φ may differ randomly between each measurement, giving
us an uncertainty in the final state. The longer the wait time, the more phase φ
accumulates and thus the result of each measurement may fluctuate. Fluctuations
in ∆ϕ have the same effect.

By scanning ∆ϕ from 0 to 2π the population in 4D5/2 is observed to oscillate
from 1 to 0 and then back up to 1 again, corresponding to oscillations between
|1〉 and |0〉. The contrast2 of these oscillations will be 1 if we have no decoherence
mechanisms. Of course, in physical systems we will have noise and thus deco-
herence, which means that for longer wait times the qubit starts to decay from a
coherent superposition state into a mixed state. This is due to fluctuations in φ.
If φ fluctuates between each measurement then the final Bloch vector fluctuates
as well. So after scanning ∆ϕ we would not get the expected contrast of 1, since
these Bloch vector fluctuations average to result to a lower contrast. Effectively
this reduces the length of the Bloch vector to less then 1. As such, to quantify
the coherence time, we repeat the measurements above for many wait times and
characterize the contrast decay.

The shape of this contrast decay depends on the nature of the noise respon-
sible for the decoherence. For white noise the contrast decay is exponential, but
it can have, for example, Gaussian characteristics as well, as in [15]. Gaussian
characteristics, according to section 6.3, occur due to temporal correlation in the
noise.

1This is done by using an Acousto-Optical Modulator (AOM) to stop the laser light from going
to the ion.

2Here contrast means that difference between the maximum and minimum values.
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6.2.2 Measuring the population with electron shelving

The population in 4D5/2 is determined via the electron shelving technique [16][5]
illustrated in figure 6.3. The 5S1/2 ↔ 5P1/2 transition is driven using a 422 nm
laser. If the ion is in the 5S1/2 state then it will scatter photons and we see
fluorescence, which is detected via a photomultiplier tube (PMT). But if it is in
the 4D5/2 state then it will not scatter photons and the ion will appear dark. This
way we can determine if the ion is in the 4D5/2 state or not by simply looking
at its fluorescence. Repeating an entire experimental sequence many times allows
determination of the population in 4D5/2.

5S1/2 |1〉

5P1/2

4D3/2

4D5/2 |0〉

Qubit 674 nm
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Figure 6.3: The relevant energy levels for state detection. The 5S1/2 ↔ 5P1/2

transition is driven with a 422 nm laser. If the ion is in state 5S1/2 the ion will
appear bright, but if it is in state 4D5/2 it will appear dark.

Since there is a finite probability that the 5P1/2 state will decay to the 4D3/2

state, a 1092 nm repumping laser driving the 4D3/2 ↔ 5P1/2 transition is used to
bring back population to 5P1/2, from which it may decay to 5S1/2. If this was not
done it would be possible for a 5S1/2 state to be seen as dark, and then we would
mistake it for the 4D5/2 state.

6.3 Noise model and coherence times

To quantify the coherence times for the Ramsey and spin-echo measurements, we
fit a Gaussian Ae−t

2/2τ2 to the contrast decay. Here A is the initial contrast and
τ is the coherence time, which are used as free parameters for the fits. As a
consequence the coherence time is defined as when the contrast has decayed to
1/
√
e of its initial amplitude.

To motivate this type of fit, we can follow the treatment in [17][7] but3 deriving

3Also we only consider 1 qubit where the papers are more generic and model a N -qubit system
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coherence times instead of fidelity. There the phase noise affecting a qubit is
modeled as

Ĥnoise(t) =
∆E(t)σ̂z

2
(6.4)

where ∆E(t) is the energy fluctuation as a function of time and σ̂z represents how
the phase fluctuation acts on the qubit as a rotation around the z-axis of the Bloch
sphere. For magnetic field fluctuations we have that ∆E(t) = ∆µ∆B(t), where
∆µ is the magnetic sensitivity of the transition, while laser phase noise4 can be
modeled as a fluctuating frequency detuning ∆ω(t) giving us ∆E(t) = ~∆ω(t).

Using this Hamiltonian we can calculate the time evolution of the state |ψ〉 due
to the influence of the noise as

|ψ(t)〉 = exp

(
− i
~

∫ t

0

dt′ Ĥnoise(t
′)

)
|ψ(0)〉 (6.5)

where the exponential is the time evolution operator. In a Ramsey experiment the
first π/2-pulse prepares the initial state |ψ(0)〉 = (|0〉+ |1〉) /

√
2. Ĥnoise(t) causes

an accumulation of random phase due to ∆E(t) and we get

|ψ(t)〉 =
1√
2

(exp (−iφ) |0〉+ exp (iφ) |1〉) . (6.6)

where

φ =
1

2~

∫ t

0

dt′∆E(t′). (6.7)

For many repetitions of the Ramsey experiment we describe the ensemble of the
states with the density operator ρ̂(t). The off-diagonal elements of ρ̂ are related to
the coherence of the system. In particular, ρ̂ averaged over the fluctuations ∆E(t)
can be expressed as

ρ̂(t) = |ψ(t)〉〈ψ(t)| = 1

2

∑
j,k=0,1

exp [(−1)j+1iφ] |j〉〈k| exp [(−1)k+1iφ]†. (6.8)

with the bar Q denotes the ensemble average of some quantity Q. This can be
more conveniently be expressed in matrix form. If we define the coefficients of |0〉
and |1〉 to be c0 = exp (−iφ) /

√
2 and c1 = exp (iφ) /

√
2, then

ρ̂(t) =
1

2

(
1 2c0c∗1

2c1c∗0 1

)
=

(
ρ11 ρ12

ρ21 ρ22

)
. (6.9)

subject to a collective phase noise instead.
4The laser is not illuminating the ion during the wait time, but it is on and fluctuates which
affects the relative phase between the first and second π/2 pulse.
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We can now calculate the coherence [2][11] C(t) = 2|ρ12|. To evaluate this, first
consider the term corresponding to ρ12 in ρ̂, which we will denote ρ̂12. We get

ρ̂12 =
1

2
exp (−2iφ)|0〉〈1| (6.10)

If we now assume that ∆E(t) is Gaussian distributed for each time t, i.e. that we
have a Gaussian process, we can use the Gaussian moment theorem[18] to show
that5

exp(−2iφ) = exp
(
−2φ2

)
(6.11)

then ρ̂12 becomes

ρ̂12 =
1

2
exp

(
−2φ2

)
|0〉〈1|. (6.12)

And thus we have found that ρ12 = exp
(
−2φ2

)
/2, giving us C(t) as

C(t) = 2|ρ12| = exp
(
−2φ2

)
. (6.13)

By considering the definition of φ we can see that

exp
(
−2φ2

)
= exp

(
− 1

2~2

∫ t

0

dt1

∫ t

0

dt2 ∆E(t1)∆E(t2)

)
(6.14)

Now we assume that the noise is a stationary process, meaning that the correlation
is independent of any time shift. In other words for all time shifts tshift

∆E(T + tshift)∆E(tshift) = ∆E(T )∆E(0). (6.15)

If we use this and make a change of variables to T = t1 − t2 and t′ = (t1 + t2)/2,
we get

exp
(
−2φ2

)
= exp

(
− 1

2~2

∫ t

0

dT (t− T )∆E(T )∆E(0)

)
(6.16)

If we now assume that the correlation exhibits an exponential decay with decay
rate γ

∆E(T )∆E(0) = ∆E2e−γT (6.17)

then we can solve the integral to obtain

C(t) = exp

(
− 1

2~2

∫ t

0

dT (t− T )∆E2e−γT
)

=

= exp

(
−∆E2

~2γ2

[
e−γt + γt− 1

])
=

= exp

(
− 1

T2γ

[
e−γt + γt− 1

])
(6.18)

5Equation (6.11) is derived in appendix B.
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where in the last step defined T2 = ~2γ/∆E2. Now let us consider the two limiting
cases when γt is large and small.

In the limit where γt� 1 the coherence exponentially decays as C(t) ≈ e−t/T2 ,
this is known as the Markovian limit. This unfortunately does not give a very good
fit to our data.

In the limit where γt � 1 we obtain the Gaussian decay C(t) ≈ e−t
2/2τ2 ,

where τ =
√
T2/γ. In other words, as long as t is smaller then the characteristic

time 1/γ for the correlation ∆E(t)∆E(0) to decay to 1/e the coherence decays
approximately as a Gaussian. This does give a good fit for our data.

6.3.1 Analyzing noise using coherence time measurements

We now assume to have two noise sources, namely magnetic field fluctuations
∆EB(t) and laser frequency fluctuations ∆EL(t). Furthermore we assume that
∆EB(t) is not correlated to ∆EL(t) and that both of them individually satisfy
equation (6.17). With ∆E(t) = ∆EB(t) + ∆EL(t), we can then calculate the
coherence

C(t) = exp

(
− 1

~2

∑
k=B,L

∆E2
k

γ2
k

[
e−γkt + γkt− 1

])
(6.19)

where γB and γL are the decay rates for the correlations ∆EB(t)∆EB(0) and
∆EL(t)∆EL(0), respectively. The two noise sources add quadratically in the co-

herence. Note that since we have opted to write C(t) in terms of ∆E2
L and ∆E2

B

rather then with T2 times, since these are the quantities of interest here.
If we now assume fast correlation decays, so γBt � 1 and γLt � 1, we can

perform a Taylor expansion of the e−γkt term to second order

e−γkt ≈ 1− γkt+
(γkt)

2

2
. (6.20)

where higher order terms have been neglected since γkt� 1. Combining this with
equation (6.19) yields after some simplification

C(t) = exp

(
−∆E2

B + ∆E2
L

2~2
t2

)
. (6.21)

Defining τ = ~/
√

∆E2
B + ∆E2

L allows us to once again express this as

C(t) = exp

(
− t2

2τ 2

)
. (6.22)

34



Now let us relate ∆EB(t) and ∆EL(t) to the magnetic field and laser fre-
quency fluctuations ∆B(t) and ∆ω(t). For the laser frequency fluctuations this
relationship is ∆EL(t) = ~∆ω(t). For the magnetic field, we first need to con-
sider the Zeeman energy shift of the transitions due to external magnetic fields.
In case of 5S1/2(mj = −1/2) ↔ 4D5/2(mj,D) transitions, we calculate a shift
of (1 + 6mj,D/5)µBBext in an external magnetic field Bext. As such ∆EB(t) =
∆µ∆B(t), where ∆µ is the magnetic sensitivity defined in equation (6.1). The co-
herence time τ can now expressed in terms of the magnetic field and laser frequency
fluctuations as

τ =
~√

∆µ2∆B2 + ~2∆ω2

. (6.23)

We probe two transitions which we denote a and b, with the corresponding mag-
netic field sensitivities ∆µa and ∆µb. From this we determine the coherence times
of the transitions to be τa and τb. We obtain two equations

τa =
~√

∆µ2
a∆B

2 + ~2∆ω2

, (6.24)

τb =
~√

∆µ2
b∆B

2 + ~2∆ω2

. (6.25)

Assuming the difference in coherence time is due to the different magnetic field
sensitivities of the two transitions, this allows us to deduce ∆B2 and ∆ω2. After
some algebra we can get that

∆B2 =
~2

∆µ2
b −∆µ2

a

(
1

τ 2
b

− 1

τ 2
a

)
, (6.26)

∆ω2 =
1

τ 2
a

+
1

1− (∆µb/∆µa)2

(
1

τ 2
b

− 1

τ 2
a

)
=

=
1

(∆µb/∆µa)2 − 1

((
∆µb
∆µa

)2
1

τ 2
a

− 1

τ 2
b

)
(6.27)

As such, under the assumptions that the correlations decays exponentially with
decay rates γB and γL, that γBt� 1 and γLt� 1 and that the difference in coher-
ence time is due to the different sensitivity to the magnetic field of the transitions,
we can infer information about ∆B2 and ∆ω2 by measuring the coherence times
for the two transitions.

Let transition a and b be the insensitive and sensitive transition, for which
mj,D = 1/2 and mj,D = −5/2. According to equation (6.1) we get the mag-
netic sensitivities ∆µa = 2µB/5 and ∆µb = −10µB/5. From this and equations

35



(6.26) and (6.27) we can get the root mean square (RMS) of the magnetic field
fluctuations and the angular frequency fluctuations

√
∆B2 =

5
√

6~
24µB

√
1

τ 2
sens

− 1

τ 2
insens

, (6.28)

√
∆ω2 =

√
1

24

(
25

τ 2
insens

− 1

τ 2
sens

)
(6.29)

where τinsens = τa and τsens = τb are the coherence times of the insensitive

and sensitive transitions. Note that for
√

∆ω2 to be real we must have that

τinsens/τsens ≤ 5, with equality when
√

∆ω2 = 0. Conversely if we have no mag-

netic field noise
√

∆B2 = 0 then τsens = τinsens. This is the physically possible
range for6 τinsens and τsens according to our model. Using error propagation we
get the uncertainties

σ√
∆B2

=
5
√

6~
24µBτ 2

insensτ
2
sens

√
σ2
insensτ

6
sens + σ2

sensτ
6
insens

τ 2
insens − τ 2

sens

, (6.30)

σ√
∆ω2

=

√
6

12τ 2
insensτ

2
sens

√
625σ2

insensτ
6
sens + σ2

sensτ
6
insens

25τ 2
sens − τ 2

insens

. (6.31)

where σinsens and σsens are the uncertainties in τinsens and τsens.
We can additionally obtain a fluctuation of the transition frequency δν from

the magnetic field fluctuations by using the magnetic field sensitivity β, due to the
Zeeman shift of a transition. δν becomes

δν =
∆µ

h

√
∆B2. (6.32)

6.4 Effect of a magnetic field gradient on an ion

string

If there is a magnetic field gradient, transitions for the different ions in an ion string
will have different frequency shifts ∆ν. For two trapped 88Sr+ ions separated by a
distance ∆z in a linear magnetic field B, the sensitive and insensitive transitions
will be shifted by

∆ν =
∆µ

h
∆z

∂B

∂z
. (6.33)

6This can be generalized to other transitions by considering equations (6.26) and (6.27).
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where ∆µ is the magnetic field sensitivity and ∆z · ∂B/∂z is the difference in
magnetic field between the ions.

Now consider an idealized scenario where the laser is resonant on one of the
ions and that the only detuning on the other ion is due to the Zeeman shift. ∆ν is
then the detuning of the laser on the second ion. If the resonant Rabi frequency is
Ω, the effective Rabi frequency Ωeff and the amplitude A of the Rabi oscillations
at the second ion are

Ωeff =
√

Ω2 + (2π∆ν)2, (6.34)

A =
Ω

Ωeff

. (6.35)

The Rabi frequency in our experiment may be around 10 kHz to 100 kHz.

6.5 Experimental results

6.5.1 Ramsey measurements and coherence times

The contrast for the Ramsey measurements are shown in figure 6.4 together
with the Gaussian fit of Ae−t

2/2τ2 . This is for both with the coils and with
the permanent magnets, with and without using the compensation coils. The
more and less sensitive transitions 5S1/2(mj = −1/2) ↔ 4D5/2(mj = −5/2) and
5S1/2(mj = −1/2) ↔ 4D5/2(mj = −1/2) are both shown for each case. The line
trigger was active for all these measurements.

The coherence times τ for the Ramsey measurements of each case are com-
pared in figure 6.5 for both the more and less sensitive transition. We can see
that the coherence times are unfortunately not affected much by replacing the
coils with permanent magnets. For the insensitive transition we can see a longer
coherence time by a few hundred µs, from τ = (1250± 50) µs for the coils to
τ = (1500± 80) µs with the magnets. For the sensitive transition the coherence
time is τ ≈ 500 µs for both the coils and the magnets. Since the sensitive transition
should see a greater improvement in coherence times it is unlikely the improve-
ment for the insensitive transition comes from the permanent magnets. It is more
likely the improvement was due to something else, perhaps even just a day to day
variation.

For the
√

∆ω2 obtained with the magnets coherence times seems smaller, com-
pared to using the coils. This is likely due to day to day fluctuations. It could
also be that the stabilization electronics for the coils introduced laser noise, but it
is unlikely.
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Figure 6.4: Contrast of Ramsey measurements for the more and less sensitive
transitions with the line trigger, for when the coils (a) and permanent magnets
with (b) and without (c) compensation coils were used. A Gaussian fit Ae−t

2/2τ2

is shown for each contrast.

6.5.2 Fluctuations

Following the analysis derived in section 6.3.1, it is possible to derive some addi-
tional information about the magnetic field and laser frequency fluctuations us-
ing equations (6.28) and (6.29) as well as (6.30) and (6.31) for the uncertainty
in the result. The results for when the coils and permanent magnets, with and
without compensation coils, are shown in figure 6.6. From the data we get that√

∆B2 ≈ 110 µG while
√

∆ω2/2π ≈ 100 Hz.
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Figure 6.5: The coherence times, defined as when the contrast has decayed to
1/
√
e, when using the coils, permanent magnets and permanent magnets without

compensation coils in use. The coherence times are both for the more and the less
sensitive transitions, as well as both with and without the line trigger.
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Figure 6.6: The RMS of (a) the magnetic field fluctuations and (b) laser frequency
fluctuations for when the coils and magnets, both with and without the compen-
sation coils, were used to generate the quantization magnetic field. These results
were obtained as described in section 6.3.1 with the line trigger active.

We can compare
√

∆B2 to the results from [2], where they obtained that√
∆B2 = 2.7·10−2 µG. This was with a magnetic shielding and thus their magnetic

field fluctuations are much lower.
To estimate the frequency fluctuations introduced via the magnetic field fluc-

tuations we can use equation (6.32) with equations (6.3) and (6.2). Using the
permanent magnets with the compensation coils the frequency fluctuations are
δνinsens = (63± 3) Hz and δνsens = (−315± 16) Hz for the insensitive and sensi-
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tive transitions, respectively.

6.5.3 Measurements of the magnetic field strength

The magnetic field strength measured with the ion is shown in figure 6.7 when
using the coils and the permanent magnets. The gradient for the permanent
magnets has reversed direction compared to the coils, since we reversed the di-
rection of the magnetic field when they were installed. This indicates that the
magnetic field gradient is not due to the coils or magnets, but external in ori-
gin. The mean magnetic field strength measured by the ion when the coils were
used was 〈Bc〉 = (3.545± 0.002) G. With the permanent magnets we measured
〈Bm+c〉 = (3.457± 0.002) G and 〈Bm〉 = (3.470± 0.002) G with and without the
compensation coils, respectively.
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Figure 6.7: Magnetic field strength at different positions when using (a) the coils
or (b) the permanent magnets to generate the magnetic field, with and without
the compensation coils.

From figure 6.7 we can see that the magnetic field strength varies linearly. By
fitting a first order polynomial we obtain that with the coils the magnetic field
gradient at ion trap is ∂Bc/∂z = (85.5± 1.9) µG/µm while the gradients with the
permanent magnets are ∂Bm+c/∂z = (−91.1± 2.0) µG/µm with the compensation
coils and ∂Bm/∂z = (−89.1± 2.5) µG/µm without. Assuming the magnetic field
should not deviate much from the one observed in section 5.2.1, it would take a
displacement of several cm from the center point to reproduce any of the ∂B/∂z
presented here. Thus it is more likely the magnetic field gradient results from
external magnetic fields. For example, it is possible some part of the vacuum
chamber containing the ion trap has been magnetized.

Using equation (6.33) we can estimate the transition frequency shifts ∆ν be-
tween different positions along the trap axis from these gradients. In particular,
we will use ∂Bm+c/∂z, but the other gradients should give similar results. We
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Figure 6.8: The gradient ∂Bm/∂z measured by the ion with the permanent mag-
nets together with the magnetic field strength measured by the Hall probe in
section 5.2.1, when the magnet holders were in a Helmholtz-like configuration.

can also estimate the change in effective Rabi frequency Ωeff and Rabi oscil-
lation amplitude A due to the Zeeman effect with (6.34) and (6.35). The re-
sults can be seen in figure 6.9 over 100 µm, where a resonant Rabi frequency
Ω/2π = 16 kHz has been assumed. This Rabi frequency has been observed
in the experiment, which is why it was chosen. For the sensitive transition
we can see a shift over 100 µm of ∆ν = (25.5± 0.6) kHz, compared to a shift
of ∆ν = (−5.1± 0.1) kHz for the insensitive transition. While Ωeff increases
and A decreases for both transitions, the sensitive transition is affected to a
much larger degree since for it Ωeff/2π = (30.1± 0.5) kHz almost doubles while
A = (53.1± 0.8) % drops to almost half over 100 µm. For the insensitive transi-
tion we instead get Ωeff/2π = (16.80± 0.03) kHz and A = (95.3± 0.2) %. The
gradient thus seems to be a problem mostly for sensitive transitions, but still has
a much lower effect on insensitive transitions.

We can compare the gradients with the magnetic field strength that was mea-
sured with the Hall probe in 5.2.1. This is done in figure 6.8, where we have taken
the data from figure 5.4 and then added a line representing the gradient observed
by the ion. In particular, we used ∂Bm/∂z for this figure. We can see that the ion
sees a much larger gradient then we would expect from the magnet holders. This
indicates that the gradient is due to external magnetic fields.

41



(a)

0 20 40 60 80 100

Position z / µm

−5
0
5

10
15
20
25

∆
ν

/
kH

z

Sensitive

Insensitive

(b)

0 20 40 60 80 100

Position z / µm

16

20

25

30

Ω
e
f
f
/2
π

/
kH

z Sensitive

Insensitive

(c)

0 20 40 60 80 100

Position z / µm

50

60

70

80

90

100

A
/

%

Sensitive

Insensitive

Figure 6.9: The difference in (a) transition frequency ∆ν, (b) effective Rabi fre-
quency Ωeff and (c) Rabi oscillation amplitude A along the trap axis relative to
z = 0 due to the observed gradient in the magnetic field. This is for when the
permanent magnets were used in conjunction with the compensation coils. We
used a resonant Rabi frequency of Ω/2π = 16 kHz.
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Chapter 7

Discussion: Permanent magnets

This chapter contains a discussion about the permanent magnets, as well as pos-
sible further developments.

7.1 Coherence times

We did not observe an improvement in coherence time by replacing the coils with
permanent magnets. This is unfortunate but not surprising, as we do not have a
magnetic shield and thus fluctuations in external magnetic fields from electrical
devices in the lab or even strong magnets in neighboring labs can still interact with
the ions in the trap. This has been observed previously in Mainz[2], where they
only observed a significant increase in coherence from the permanent magnets
with a magnetic shield. It should be noted, however, that they did observe a
smaller improvement to coherence without a magnetic field shielding, which we
did not. It is possible we have a lot of magnetic field noise in the current setup
that dominates over the fluctuations caused by the coils, and therefore we do not
see an improvement. It is also possible that nearby labs, some of which has strong
magnets of several tesla, could affect the results. With a magnetic shielding we
should see an improvement.

7.2 Magnetic field gradient

We did observe a gradient in the magnetic field. This gradient likely is external
in origin and thus generated by electrical devices in the lab, or from magnetized
metal. We can draw this conclusion from the fact that the gradient was much larger
then what we observed with the Hall probe in chapter 5 and since it was roughly
the same with the coils as with the magnets, just with opposite direction. Through
the Zeeman effect this gradient can cause shifts in the transition frequencies for
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different ions in an ion string and thus in effective Rabi frequency amongst other
things. This is less of an issue for transitions insensitive to the magnetic field and
for higher Rabi frequencies, but it is prudent to try and reduce the gradient.

7.3 Fluctuations of magnetic field and laser fre-

quency

In section 6.5.2 we used the theory derived in section 6.3.1 to estimate the root
mean square of the magnetic field fluctuations and the laser frequency fluctua-
tions. It seems like the magnetic field fluctuations dominate for the more sensitive
transition, while being roughly equal to the laser frequency fluctuations for the
less sensitive transition.

It is possible to characterize the laser linewidth using entangled or correlated
states[19]. This could perhaps provide a more accurate result then the method

employed here to estimate
√

∆ω2.

7.4 Future developments

7.4.1 Magnetic field shielding

An important step for better coherence times is installing a magnetic shielding
to isolate the ions in the ion trap from external magnetic fields from the control
electronics and surrounding labs which are detrimental to the coherence times. It
has been demonstrated before [2] that external magnetic field fluctuations can con-
tribute significantly to decoherence and a magnetic shield is required to efficiently
suppress these, while only replacing the coils with permanent magnets is not effec-
tive. Since the analysis of the magnetic field fluctuations in section 6.5.2 indicate
that external magnetic field fluctuations contribute significantly to decoherence,
shielding the ion trap from such noise will be essential.

7.4.2 Replacing the compensation coils

The compensation coils generate much weaker magnetic fields and are probably not
limiting coherence times by much. Additionally with a magnetic shield they might
not be needed. They are setup to generate orthogonal magnetic fields along the x-
and y-axis at the ion trap and small fluctuations thus change the direction but not
the magnitude to first order. Still we might want to replace the compensation coils
as well with permanent magnets, to improve the magnetic field stability further.
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Since the compensation coils should target specific magnetic field strengths,
we likely need to adjust the number of magnets in each of the replacing magnet
holders. Additionally, we probably want to use a large number of magnets to allow
fine tuning the magnetic field strength. Getting the right magnetic field strength
would require some effort since we cannot simply adjust the current as with the
compensation coils, but it should work.

7.4.3 Compensation of the magnetic field gradient

Since the gradient appears to be due to external magnetic fields, the magnetic
field shielding should help mitigate the effect and reduce the gradient. There are
other alternatives to be aware of as well. The simplest way to try and reduce
the gradient would be to tweak the magnet holder separation, and maybe add
additional magnets to one of the holders. There are more involved possibilities
as well, such as modifying the magnet holders. One could add additional rings of
permanent magnets to the setup to compensate for the gradient.

7.4.4 Magnet holder improvements

The 3D printed magnets holders have so far been sufficient. That said, as has been
demonstrated in figure 4.4, the 3D printer had issues creating holes and most of
them would end up slightly tilted. Currently this is not known to cause a problem
in the experiment. Possible solutions include tweaking the 3D printer settings
and printing new magnet holders, or to manufacture magnet holders from a non-
magnetic metal such as aluminium. Aluminium has been used for this application
before[2] and is known to work. This would likely allow better precision when
creating the holders and in particular the holes for the magnets would likely have
the correct dimensions and angle.

While the Helmholtz configuration derived here has many desirable properties,
it may be possible to improve upon it. As mentioned above in the discussion of
the gradient, one possible improvement would be to add more rings of permanent
magnets to compensate for the gradient.

7.4.5 Temperature stability of the magnetic field

Temperature stability is not currently known to be a problem, but other groups
have observed [11] drifts in qubit transition frequency that have been correlated
with temperature fluctuations. A solution to this problem could be active tem-
perature stabilization with heating wires or compensation coils. Doing this would
require equipment that could stabilize temperature on the appropriate level, which
can be challenging.
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Another approach to this problem is passive compensation using two types of
magnets, such as Sm2Co17 and neodymium magnets, with different temperature
dependence and opposite orientations. The idea is that the temperature depen-
dence of the two types of magnets will cancel each other, so the combined magnetic
field has lower temperature dependence then either of the magnet types. This has
been shown to work [11].
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Chapter 8

Test setup for fiber noise
cancellation

In this chapter we describe how the test setup for fiber noise cancellation was
implemented. We also present the testing results.

8.1 Fiber noise

First we will describe how fibers can introduce phase noise, with a similar treatment
to [20]. Consider a single mode fiber with angled end points1 of length L, which lies
in a straight line along the z-axis. We couple a monochromatic laser at frequency
ωc into this fiber at z = 0. This laser light is linearly polarized along the y-axis.
The electric field ~E(z, t) in the fiber can then be written as

~E(z, t) = E0 cos(kL (z)− ωct+ ϕ)ŷ (8.1)

where E0 is the amplitude of the electric field, k is the wavenumber, ϕ is an
arbitrary initial phase and L (z) is the optical path length. If n(z) is the refractive
index at z, then

L (z) =

∫ z

0

n(s) ds. (8.2)

To determine how the fiber affects the light, consider the electric field ~Eend(t) =
~E(L, t) at the far end of the fiber

~Eend(t) = E0 cos(kL (L)− ωct+ ϕ)ŷ = E0 cos(ωct− kL (L)− ϕ)ŷ. (8.3)

where we in the last step used that cos is an even function to make the ωct term
positive. This is because that change makes things more convenient later on.

1For a single mode fiber, angled end points means no reflections at the end points.
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The phase of ~Eend is determined by kL (L), representing the phase from the
propagation through the fiber, and ϕ, which is an initial phase. Combining these
phase factors

φ = −(kL (L) + ϕ) (8.4)

allows us to write ~Eend(t) as

~Eend(t) = E0 cos(ωct+ φ)ŷ. (8.5)

Due to thermal fluctuations the fiber length L might expand or contract and
if the refractive index n(z) has a temperature dependence it could also change
with time or position. Additionally, any vibrations the fiber picks up from its
environment introduces time dependence into L. From equation (8.2) we can see
that this introduces time dependence into L (L) and thus into φ.

We can express this time dependence as φ(t) = m(t) +φ0, where m(t) contains

the time dependence and φ0 is a constant. This gives ~Eend(t) as

~Eend(t) = E0 cos(ωct+m(t) + φ0)ŷ. (8.6)

Since this modulates the instantaneous phase of the light field it is known as
phase modulation.

The frequency of visible light lies in the hundreds of THz, which is much faster
then frequency components introduced by fiber noise. It does have a detrimental
affect on the frequency spectrum, though, due to spectral broadening of the laser
linewidth.

It is possible to cancel fiber noise via fiber noise cancellation (FNC), which as
been used to cancel fiber noise to sub-Hertz and even millihertz levels[9][21]. There
are several approaches, but the rough idea is to back reflect some light through
the fiber, use it to measure the fiber noise and then modulate the laser light going
into the fiber to cancel the measured fiber noise. The setup we used is described
below, in section 8.2.

8.2 Experimental setup for fiber noise cancella-

tion

Our test setup for fiber noise cancellation is inspired by one used at ETH Zürich
[20] and is illustrated schematically in figure 8.1. The optical part is shown in
figure 8.2. This scheme was chosen to maximize the amount of power going to the
experiment.

The laser is a Toptica TA pro extended cavity diode laser with tapered amplifier
at 674 nm, with a corresponding angular frequency ω. It is used for the qubit
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Figure 8.1: Schematic overview of the test setup for fiber noise cancellation (FNC).
The control system electronics is shown in more detail in figure 8.3.

transition and has a a narrow linewidth of ≈ 100 Hz as characterized in section
6.5.2. A small fraction of the laser was split off and sent to the test setup via a 10
m long fiber (not shown in figure 8.1). A λ/2-waveplate followed by a polarizing
beam splitter (PBS) is then used to split off part of the laser light to photodiode
B where it is overlapped with the output of the FNC setup in an out-of-loop
characterization of the fiber noise. The polarization is corrected by a second λ/2-
plate to match the output of the FNC setup. Most of the light, however, passes
straight through the PBS to be used in the test setup as described in section 8.2.1.
The first λ/2-plate was set to allow as much light as possible to pass straight to
the FNC test setup.

This light passes an Acousto-Optical Modulator (AOM) driven at 100 MHz,
and is then coupled into a 10 m fiber. The light from the far end of the fiber is
overlapped on the (fiber coupled) photodiode B2 with the light the was initially
split off with the PBS. This creates a beat note at 100 MHz, which is then observed
on a spectrum analyzer. The measures spectra are used for FNC characterization.

2Menlo Systems FPD 510-V.
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8.2.1 Optics

The laser light that went straight through the PBS is used in the test setup for
fiber noise cancellation. After the PBS it passes an AOM3 driven at an angu-
lar frequency ωAOM/2π = 100 MHz, which is followed by a lens with focal length
f = 200 mm. The 0th order of the AOM is simply reflected back via two mirrors
while the −1st order couples into a single mode fiber4 with a flat far end5. Cou-
pling efficiency is improved with two lenses with focal lengths f = 500 mm and
f = 200 mm. All other AOM orders are blocked.

The back reflected 0th order beam passes through the AOM a second time.
The +1st order of this light, denoted the (0th, 1st) order, is used for the fiber noise
cancellation. It has an angular frequency of ω + ωAOM .

Now consider the −1st order beam that couples into the fiber. In the fiber it
picks up a certain phase noise φf due to vibrations or thermal fluctuations. At the
far end most of the light exits the fiber and is coupled into photodiode B, but a
small fraction is back reflected due to the flat end. On its way back through the
fiber it picks up the same noise φf again, changing the phase by a total of 2φf .
This is assuming that φf changes slowly compared to the round-trip time6 of the
light.

The back reflected laser light from the fiber passes the AOM again. The 0th

order beam, denoted the (−1st, 0th) order, is then used for fiber noise cancellation.
It will have a frequency of ω − ωAOM and an additional phase 2φf from passing
the fiber twice. It follows the same path as the (0th, 1st) order beam.

Both the (0th, 1st) and (−1st, 0th) order beams are coupled into the fiber coupled
photodiode A7 in figure 8.1. The overlapped beams interfere and give a beat note.
The total electric field is ~Etotal(t) = ~E−10(t) + ~E+01(t) where

~E−10(t) = E−10 cos [(ω − ωAOM)t+ 2φf ] ε̂, (8.7)

~E+01(t) = E+01 cos [(ω + ωAOM)t] ε̂ (8.8)

are the electric fields for the (−1st, 0th) and (0th, 1st) order beams, respectively. ε̂
is the polarization direction and E−10 and E+01 are the electric field amplitudes.

The intensity observed by the photodiode is given by I(t) = ε0c〈| ~Etot(t)|2〉,
where 〈| ~Etot(t)|2〉 is the time average of | ~Etot(t)|2

| ~Etot(t)|2 = | ~E−10|2 + | ~E+01|2 + E−10E+01 (cos [2ωAOM t− 2φf ] + cos [2ωt+ 2φf ]) .
(8.9)

3Gooch & Housego 3100-125.
4OZ Optics PMJ-3A3A-633-4/125-3.
5Normally a single mode fiber has angled ends to cancel any back reflected light.
6Round-trip time is the time it takes for light to enter the fiber, get reflected and then exit the
fiber through the coupler it entered before.

7Menlo Systems FPD 510-V.
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Due to the finite response time of the photodiode, it averages the optical frequency
components | ~E−10|2 → E2

−10/2, | ~E+01|2 → E2
+01/2 and cos [2ωt+ 2φf ] → 0. We

get I(t) as

I(t) = I−10 + I+01 +
√
I−10I+01 cos (2ωAOM t− 2φf ) (8.10)

where I−10 = ε0cE
2
−10/2 and I+01 = ε0cE

2
+01/2 are the time averaged intensities

from the individual beams. The last term is not averaged out since the photodiode
is fast enough to see a signal with frequency 2ωAOM = 2π × 200 MHz.

The observed beat note is amplified and filtered and then used to generate
feedback in the control system, in our case a PI controller.

Photodiode B

Photodiode A

674 nm laser

-1st order

-1st order

0th order

0th order10 m
 fi

ber w
ith

 fl
at e

nd

AOM

Figure 8.2: Optical part of the test setup. Note that here the laser comes from
the right, rather from the left as in figure 8.1.

8.2.2 Electronics and PI controller

In broad terms, PI controller analyzes the feedback signal from the photodiode and
then adjusts the driving frequency ωAOM of the AOM to cancel the fiber noise φf .
The setup is shown in schematically in figure 8.3, together with the model of each
component. A Voltage Controlled Crystal Oscillator (VCXO), which is tunable in
an ≈ 23.4 kHz range around 100 MHz, is used to drive the AOM at a frequency
ωAOM . From the photodiode we get a feedback signal that depends on I(t) from
equation (8.10), with a beat note at a frequency ωPD = 2ωAOM ≈ 2π × 200 MHz.

A bias-tee is then used to suppress DC components in the photodiode signal,
after which it is amplified and filtered by two high pass filters. The high pass filters
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Figure 8.3: The control system, where a Red Pitaya STEMLab 125-14 is used as
the PI controller. The error signal e(t) comes from the photodiode and the control
signal Vcon(t) adjusts the AOM through the VCXO. The differential amplifier,
marked DA, is shown in figures 8.4(b) and 8.5, the latter being the schematic.
Low pass filters are marked as LP or 2×LP if there are two of them. Similarly
high pass filters are marked HP or 2×HP. The company and model is written
under the components, except for the signal generator where it is at the side.

are used to suppress undesired lower frequency components at ≈ 100 MHz. The
signal is then mixed down to DC with a 200 MHz reference signal from a signal
generator using a frequency mixer. The frequency of this mixed down signal will
be the frequency difference of reference signal and the beat note, which is 0 Hz
in the ideal case, but due to the phase noise from the fiber additional frequency
components can be introduced. The mixed down signal is then used as an error
signal e(t) for the PI controller.

As a PI controller we use a Red Pitaya STEMLab 125-14, shown in figure
8.4(a). It is controlled via Ethernet using PyRPL. It uses the mixed down signal
e(t) as an error signal for the built in PI controller functionality, which is configured
to keep e(t) at 0 V.

The builtin PI controller has a proportional component P and an integrating
component I, which multiplies e(t) with proportionality constant as well as inte-
grates it over time. The output control signal Vcon(t) that drives the VCXO is
[22]

Vcon(t) = Kpe(t) +Ki

∫ t

0

e(t′) dt′. (8.11)
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Figure 8.4: The FNC control system, consisting of (a) the Red Pitaya as a PI
controller, as well as (b) the differential amplifier and (c) the VCXO. The Red
Pitaya uses e(t) as the error signal and outputs a control signal Vcon(t). The
differential amplifier takes Vcon(t), an offset voltage of −1 V and outputs a rescaled
tuning voltage Vtune(t) to the VCXO, which in turn outputs Vout(t) which is used
to drive the AOM.

where Kp and Ki are PI parameters that determine the strength of the compensa-
tion from the P and I components. The P component simply pushes the frequency
in the right direction, while the I component compensates for long term drifts. We
used Kp ≈ 3.1 and Ki ≈ 259.7, set using PyRPL. Noise introduces deviations from
0 V, which the Red Pitaya attempts to compensate for by adjusting the tuning
voltage of the VCXO driving the AOM.

The control signal Vcon(t) from the Red Pitaya is used to adjust the output
frequency of the VCXO. Since Vcon(t) ∈ [−1, 1] V does not match the tuning
voltage range of the VCXO, a differential amplifier is used to shift and rescale the
control signal to the correct voltage range. The output Vtune(t) of the differential
amplifier is then used as a tuning voltage for the VCXO, but not before a low
pass filter is used to suppress unwanted high frequency components that were
introduced by the differential amplifier.

The VCXO output signal is a square wave, and thus two low pass filters are
used to suppress higher harmonics8 and make it more sinusoidal. The signal power
is adjusted to appropriate levels for driving the AOM using an attenuator and an
amplifier.

The supply voltage of the VCXO is 3.3 V.

Differential amplifier circuit

A differential amplifier is a circuit that amplifies the difference between two input
signals, in this case the control signal Vcon(t) from the Red Pitaya and a fixed

8The bandwidth of the filters is 80 MHz, but the carrier at 100 MHz is barely suppressed while
the first harmonic at 200 MHz is suppressed by > 40 dB.
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offset of −1 V. It is implemented9 using an CA3140EZ operational amplifier and
four resistors connected according to figure 8.5. This op-amp is powered by two
voltages V+ = 15 V and V− = −15 V.

−

+

Op-amp

+15 V

−15 V

−1 V
R1

Vcon(t)
10 kΩ

R2

10 kΩ

Vtune(t)

GND 0 V

Figure 8.5: The differential amplifier circuit.

The output voltage Vtune(t) of this circuit is given by

Vtune(t) =
R2

R1

(Vcon(t) + 1 V). (8.12)

With R1 = 10 kΩ, R2 = 15 kΩ we can thus rescale the output voltage of the Red
Pitaya Vcon(t) ∈ [−1, 1] V to Vtune(t) ∈ [0, 3] V, which can be used to tune the
output frequency of the VCXO.

8.3 Results

The averaged spectrum is shown in figure 8.6 for a 2 kHz span around the center
peak. This is for both when the fiber noise cancellation was active and turned off.
The inset shows the spectrum for a 100 kHz span.

We can see that there is not much noise to begin with in the setup as it is,
but some details can be observed. The fiber noise cancellation does increase the
peak of the signal by a few dBm while low frequency noise is suppressed. Since
we used the VCXO for both measurements it is not due to driving the AOM at
different power, albeit a difference in coupling efficiency could matter. In the inset,
however, we can see an increase in the noise further out from the center peak.

9The circuit can be found in [23] under the name difference amplifier.
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Figure 8.6: Averaged out-of-loop spectrum with and without fiber noise cancella-
tion, with a span of 2 kHz and a resolution bandwidth of 10 Hz. In the inset we
used a span of 100 kHz and a resolution bandwidth of 100 Hz instead.

Unfortunately there was not much noise and thus it is hard to say from the
measured spectra how well the fiber noise cancellation will perform. In chapter 9
we therefore purposefully introduce noise into the fiber to characterize its perfor-
mance.
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Chapter 9

Characterizing fiber noise
cancellation

In this chapter we characterize the fiber noise cancellation more thoroughly by
exciting specific frequency components using a speaker placed under the optical
fiber.

9.1 Characterizing setup

In order to characterize the performance of the fiber noise cancellation we would
use a speaker, positioned under the fiber, to excite specific frequency components
in the light passing through the fiber. We used either a smaller1 or a larger2

speaker, shown in figure 9.1, depending on the frequencies we characterized. The
speaker was connected to a signal generator3 which could be remote controlled from
a computer via USB. To excite a frequency component ωm we would generate a
sinusoidal signal with the speaker, introducing a phase modulation

φf (t) = A sin(ωmt+ φm) (9.1)

with amplitude A and phase φm into the laser light passing through the fiber
through vibrations. A schematic overview of the setup is shown in figure 9.2.

To control each part of the setup we used the Python programming language.
For the spectrum analyzer the PyVISA package was used and for the signal gener-
ator, the pyserial package was used. PyRPL was used to control the Red Pitaya.

1Veco Vansonic 40KS08.
2Xindao P326.63.
3Rigol DG1022a.
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(a) (b) (c)

Figure 9.1: The (a)(b) small and (c) large speaker used to excite frequency com-
ponents ωm, placed under the fiber.
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Figure 9.2: Schematic overview of the setup for characterizing the fiber noise
cancellation. Frequency components ωm are excited with a speaker placed under
the fiber.

9.1.1 Photodiode signal with a single modulation frequency

To get an idea of how the photodiode signal should look, consider the expression
for I(t) in equation (8.10). Defining the time dependence of the beat note term as
fbeat(t), we can write I(t) as

I(t) = I−10 + I+01 +
1

2

√
I−10I+01fbeat(t), (9.2)

fbeat(t) = ei(2ωAOM t−2φf ) + e−i(2ωAOM t−2φf ). (9.3)

where Euler’s formula was used to express fbeat(t) = 2 cos(2ωAOM t − 2φf ) using
exponentials. Now consider the special case of a sinusoidal modulation at ωm

− 2φf (t) = A sin(ωmt+ φm) + ∆φ (9.4)
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where A is the amplitude, φm the phase of the modulation and ∆φ any phase
difference between the overlapped laser beams. This gives fbeat(t) as

fbeat(t) = ei(2ωAOM t+∆φ)eiA sin(ωmt+φm) + e−i(2ωAOM t+∆φ)e−iA sin(ωmt+φm).

The exponential terms containing the modulation can then be rewritten using the
Jacobi-Anger expansion, called the modulation identity in [24], in the form4

e±ix sin θ =
∞∑

n=−∞

Jn(x)e±inθ. (9.5)

With x→ A and θ → ωmt+ φm we can see that

e±i(2ωAOM t+∆φ)e±iA sin(ωmt+φm) = e±i(2ωAOM t+∆φ)

∞∑
n=−∞

Jn(A)e±in(ωmt+φm) =

=
∞∑

n=−∞

Jn(A)e±i((2ωAOM+nωm)t+nφm+∆φ)

and thus

fbeat(t) = ei(2ωAOM t+∆φ)eiA sin(ωmt+φm) + e−i(2ωAOM t+∆φ)e−iA sin(ωmt+φm) =

=
∞∑

n=−∞

Jn(A)
(
ei((2ωAOM+nωm)t+nφm+∆φ) + e−i((2ωAOM+nωm)t+nφm+∆φ)

)
=

= 2
∞∑

n=−∞

Jn(A) cos [(2ωAOM + nωm)t+ nφm + ∆φ]

As such we have found that

I(t) = I−10 + I+01 +
1

2

√
I−10I+01fbeat(t),

fbeat(t) = 2
∞∑

n=−∞

Jn(A) cos [(2ωAOM + nωm)t+ nφm + ∆φ] .

From this we can see that for a modulation at a given angular frequency ωm, the
beat note spectrum should contain the center peak at 2ωAOM surrounded by series
of sidelobes at nωm for n = ±1,±2,±3, ... with an amplitude that depends on√
I−10I+01Jn(A). The phase term nφm introduces a phase factor that depends on

n.

4Typically it is expressed as eix cos Θ =
∑∞
n=−∞ inJn(x)einΘ, but the chosen form is obtained via

a different phase θ = Θ + π/2 and noting that ± sin θ = sin(±θ).
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The photodiode signal is then proportional to I(t). It is then filtered and
amplified before being mixed down to DC to give the error signal e(t) to the PI
controller. The frequency components of the error signal will be at the frequency
difference between the photodiode signal and the reference signal, giving us

e(t) = K0 +K1

∞∑
n=−∞

Jn(A) cos [nωmt+ nφm + ∆φ] . (9.6)

where K0 is due to any remaining DC voltage and K1 scales the oscillating terms.

9.1.2 Characterizing performance at different frequencies

The Red Pitaya was connected to the experiment computer via an Ethernet cable,
and could be controlled from Python via the PyRPL package. As previously
we used the PI parameters Kp ≈ 3.1 and Ki ≈ 259.7, set from PyRPL. The
measurements were taken using photodiode B connected to the spectrum analyzer,
which in turn was connected to the experiment computer via a COM port. A
Python script was then used to run a series of measurements, first with the fiber
noise cancellation active and then leaving the VCXO unlocked. In both cases the
same steps were performed.

To characterize the performance of the PI controller we first choose a number of
modulation frequencies ωm and the desired number N of repeated measurements
for each ωm. Then we find the carrier frequency ωc of the beat note, which is
important since we will be measuring at an offset ωm from the carrier and thus
we need to know the exact frequency of the carrier. The order of the modulation
frequencies is then randomized.

We now choose a frequency ωm. The speaker is used to generate a sinusoidal
signal at ωm, which introduces vibrations into the fiber and thus modulates the
optical path length of the laser light in the fiber. This way a phase modulation
φf (t) at ωm is introduced in the laser light. Assuming φf (t) takes the form of
equation (9.4) we should, according to section 9.1.1, be able to observe peaks in
the spectrum at offsets nωm from the carrier frequency ωc, where n is a non-zero
integer.

Once we have excited a modulation at ωm we measure the power at the carrier
ωc and then at the first modulation sideband ωc +ωm. The speaker is then turned
off, and we measure the power at ωc+ωm again to get information about the power
level without the modulation. The measurements are then saved to a file.

This is repeated N times for a modulation frequency ωm before continuing
with the next ωm. Close to the carrier care has to be taken to make sure the
measurement does not characterize the carrier. Once all measurements are done
for all modulation frequencies, the fiber noise cancellation is turned off and we
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Any ωm remaining?

Induce modulation at ωm
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Measure power at carrier ωc

Measure power at first
excited peak ωc+ωm

Turn off modulation

Measure power at ωc+ωm
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Use next ωm

Save measurement data

Has repeated
N times?
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modulation frequencies {ωm}

End measurements

NoYes

Yes

Begin measurements
Choose number of repetitions N

Choose modulation frequencies {ωm}

Find the carrier frequency ωc

of the beat note

Randomize order {ωm}

Figure 9.3: Flow chart over the algorithm used for characterizing the fiber noise
cancellation (FNC) at different modulation frequencies. ωm denotes a single mod-
ulation frequency, ωc denotes the carrier frequency and {ωm} the set of modulation
frequencies to characterize. The experiment is initialized with the fiber noise can-
cellation active, a given set of modulation frequencies {ωm} and the number N
of repeated measurements at each ωm. Then the sequence of measurements de-
scribed by the flow chart is run twice. First with the fiber noise cancellation and
then without. The measurement data is automatically saved digitally.
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repeat the measurements one more time with the VCXO unlocked. When unlocked
the VCXO can drift, but these drifts are slow compared to the run time of the
experiment. Do note that since the carrier frequency ωc is not guaranteed to be
the same with the VCXO unlocked as with the fiber noise cancellation, we have
to find ωc again.

When the experiment is done we activate the fiber noise cancellation and run
the experiment a few more times. Each time first with fiber noise cancellation and
then without. Locking the PI controller again currently has to be done manually.

9.1.3 Modulation frequency intervals

We measured 3 intervals. First with 12 evenly spaced frequencies ωm/2π ∈ [1, 10]
kHz followed by another 12 frequencies in ωm/2π ∈ [300, 1000] Hz. These were
measured 30 times in total, using the smaller speaker to excite the frequency
components. For the final interval we would have 6 evenly space frequencies
ωm/2π ∈ [50, 250] Hz, each of which was measured a total of 36 times. Since the
small speaker was not as effective at these lower frequencies, the larger speaker,
depicted in 9.1(c), was used instead.

9.2 Results

By driving the speaker at5 ωm/2π = 872.72 Hz we could excite frequency compo-
nents at nωm as shown in figure 9.4, both with and without fiber noise cancellation.
We see peaks at nωm for n = ±1,±2, ...,±5 and with fiber noise cancellation their
amplitude is reduced except for furthest peaks.

The results from the measurements described in section 9.1.2 are shown in log-
arithmic scale in figure 9.5, where Punlocked and PFNC denotes the power of excited
peaks at different ωm. We subtracted the background from Punlocked and PFNC
that was measured without the modulation at ωm. With this method we compare
Punlocked and PFNC without being sensitive to any noise offset, as for instance visi-
ble in the inset of figure 8.6. Figure 9.5 also shows the power ratio PFNC/Punlocked
in dB between when the fiber noise cancellation is active or inactive. We can see
that with the fiber noise cancellation the peak amplitudes are reduced, especially
for smaller ωm. At higher ωm, however, the excited peak amplitude decreases, pos-
sibly because these frequencies are not easily transmitted acoustically through the
fiber[21]. From figure 9.5(b) we can estimate that the power ratio Punlocked/PFNC
drops below 10 dB suppression above ωm/2π ≈ 4.3 kHz. For ωm/2π ≤ 1 kHz the
suppression power ratio is mostly above 20 dB.

5This frequency was chosen since the fiber would pick it up easily.

61



−5 −4 −3 −2 −1 0 1 2 3 4 5

Detuning ∆ν / kHz

−80

−60

−40

−20

A
ve

ra
ge

p
ow

er
/

d
B

m

Unlocked

With FNC

Figure 9.4: Averaged spectrum in 10 kHz span around the center peak at 100 MHz,
with a 872.72 Hz sinusoidal signal applied to the speaker.
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Figure 9.5: The (a) peak power PFNC and Punlocked, for with and without the fiber
noise cancellation, as well as (b) the power ratio PFNC/Punlocked.

Another way to quantify the suppression is by defining the linear6 suppression
∆P/Punlocked as the ratio between the power difference and the power of the un-
locked peak at ωm. ∆P/Punlocked is close to unity as long as the power at ωm is
much lower with the lock compared to without, but reduces when they become
roughly the same order of magnitude. At ∆P/Punlocked = 0 the lock has no effect
and if ∆P/Punlocked < 0 then the lock increases noise instead. ∆P/Punlocked is
shown in figure 9.6 for the measurements. We can see that ∆P/Punlocked drops be-
low 0.9 and 0.5 at ωm/2π ≈ 4.3 kHz and ωm/2π ≈ 7.5 kHz, respectively. However,
the peaks have dropped significantly in amplitude at this point and the the error
bars have become large.

6This is referred to as linear since we use mW rather then dBm for the powers.
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Chapter 10

Discussion: Fiber noise
cancellation

We have implemented a fiber noise cancellation scheme using a Red Pitaya as a
PI controller. To characterize the performance of this scheme we used speakers to
excite frequency components through phase modulation. From this characteriza-
tion we could see that the system could effectively suppress fiber noise by more
then 10 dB up to 4.3 kHz, corresponding to a linear suppression of > 90 %. Below
1 kHz the suppression was typically better then 20 dB.

The characterization method we employed could additionally be improved by
using sound level meter and a pressure sensor to determine the sound level and
air pressure at the fiber due to the speakers. This was done in [21]. We would get
more information about how the speaker affect the fiber, and thus we could better
distinguish between where the speaker is less efficient and where the fiber does not
pick up acoustic vibrations.

10.1 Improvements to the fiber noise cancella-

tion

The current system appears to work well, but some improvements can still be
suggested. For the PI controller there is room to further optimize the PI param-
eters, which could yield better performance and reliability. Other then that we
could also improve the electronics. A more careful design of the circuits could help
eliminate noise introduced by the electronics. This is not known to be a problem
at the moment, but it is something to be aware of for going forward. We could
also design an integrated circuit containing the electronics, which has been done
successfully before [20].
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10.1.1 Overcoming the limitations of the Red Pitaya DAC

Currently we employ a Red Pitaya as a PI controller. It has an 14 bit digital-to-
analog converter (DAC) allowing it to adjust the output voltage in steps of 2/214 V.
The Red Pitaya was able to tune the VCXO output frequency in a frequency range
of ≈ 23.4 kHz. Thus the system should be able to adjust the output frequency in
steps of 23.4 kHz/214 ≈ 1.43 Hz. It is desirable to get linewidths of 1 Hz or lower,
but this is might not feasible with the Red Pitaya and the current VCXO.

Alternatively we could switch to a VCXO with lower tuning range to get around
this, but this would limit the fiber noise cancellation efficiency for higher frequen-
cies. Whether this poses a problem depends on the phase noise introduced by the
fibers.

Another option is to use a different PI controller with a higher resolution DAC.
Keep in mind that every extra bit for the DAC doubles the resolution, so even 15
bits would improve performance. If we wish to retain the tuning range of the
VCXO, or perhaps even increase it, then a different PI controller is likely required.
Alternatively a different kind of control system, such as a Phase-Locked Loop[23],
could be used.
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Chapter 11

Summary and outlook

In this thesis we have setup two systems for improving the coherence times of
trapped ion qubits.

We have replaced the previously used coils by two frames, each of which con-
taining 60 Sm2Co17 permanent magnets. They were mounted at the same place
as previously the coils and have been adjusted to be separated by ≈ 25 cm to be
in a Helmholtz-like configuration and produce a homogeneous magnetic field. We
measured the magnetic field to be B ≈ 3.46 G and magnetic field gradients of
∂Bm+c/∂z = −91.1± 2.0 µG/µm and ∂Bm/∂z = −89.1± 2.5 µG/µm, depending
on if the compensation coils were used or not.

Coherence times were unfortunately not improved, which is consistent with pre-
vious results from other groups[2] where they found that a magnetic field shielding
is required for substantial coherence time improvements. We are likely limited by
noise from external magnetic fields generated by the electrical devices in the lab,
or possibly from other labs that utilize strong magnets. A magnetic field shielding
has arrived but has yet to be installed in the experiment.

We estimated the RMS of the magnetic field and laser frequency fluctuations

to be
√

∆B2 ≈ 110 µG and
√

∆ω2 ≈ 2π× 100 Hz, respectively. These results can
likely be improved utilizing entangled or correlated states, which has previously
been used to measure laser linewidth[19].

To improve coherence, a magnetic field shielding is required. Further improve-
ments can be made by possibly replacing the 3D printed magnet holders with
aluminium magnet holders. The magnetic field gradient can possibly be improved
by tweaking the magnet holder separation and how many magnets are on each
holder. Additionally, magnetic field stability may be improved using several dif-
ferent types of permanent magnets to compensate for temperature effects.

We have also implemented a test setup for fiber noise cancellation, using a Red
Pitaya as PI controller. The current setup can likely be significantly improved,
but it appears to be able to effectively cancel fiber noise up to a few kHz. This can

66



likely be improved with a dedicated integrated circuit, as well as by optimizing
the PI parameters more and with a PI controller with a DAC with more bits.
Alternatively a PLL might be an alternative to a PI controller.

In short, the next steps for improved coherence times should be to implement
the fiber noise cancellation in the ion trap experiment and to add the magnetic
field shielding. The fiber noise cancellation should be easier to implement, but
if magnetic field fluctuations are the limiting factor then the most significant im-
provement likely comes from the magnetic field shielding.

It is possible[25] to use spin-echo measurements with more then one π-pulse
between the initial and final π/2-pulses to investigate the noise spectrum. If these
techniques could be adapted to our experiment, it would allow us to identify at
what frequencies we have noise, which could help identifying noise sources and
figuring out how to avoid them.
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Appendix A

The Bloch sphere

This appendix aims to give an introduction to the Bloch sphere for the unfamiliar
reader. For more information I refer to [1][26], which were used in writing this
appendix.

A.1 The Bloch sphere

The computational basis for a single qubit |ψ〉 is |0〉 and |1〉. In general the qubit
can be written as a linear combination |ψ〉 = c0|0〉 + c1|1〉 where c0 and c1 are
complex coefficients subject to the normalization condition |c0|2 + |c1|2 = 1.

The normalization condition of c0 and c1 implies that the possible qubit states
|ψ〉 can have a geometric interpretation. Specifically, let us rewrite c0 and c1 using
two angles θ and φ as

c0 = cos

(
θ

2

)
,

c1 = eiφ sin

(
θ

2

)
.

Then |ψ〉 becomes1

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉. (A.1)

Written in this way we can interpret θ and φ as the polar angle and azimuthal angle
of a point on a unit sphere called the Bloch sphere. An angle θ = 0 describes a

1It should be noted that |ψ〉 should technically be multiplied with an extra phase factor eiγ to
be more general. However, this phase factor has no measurable effect and for this reason it is
neglected here.
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ϕ

θ

Figure A.1: Bloch sphere representation of a state where c0 = cos(π/8) and
c1 = eiπ/2 sin(π/8), corresponding to θ = π/4 and φ = 2π/5 from equation
(A.1).

pure |0〉 state while θ = π describes a pure |1〉 state. These become the north and
south poles of the Bloch sphere. Intermediate θ along with 0 ≤ φ < 2π describe
all other states. The equator on the Bloch sphere has θ = π/2 and contains all
states

|ψ〉 =
1√
2
|0〉+

eiφ√
2
|1〉. (A.2)

These states, with θ = π/2, represents states where |ψ〉 is equally probable to be
measured in |0〉 as in |1〉. Two special cases of these states are the |+〉 and |−〉
states, corresponding to φ = 0 and φ = π respectively. In other words

|±〉 =
1√
2

(|0〉 ± |1〉) . (A.3)

The vector describing the position of the state on the Bloch sphere is called the
Bloch vector. In polar coordinates the Bloch vector ψ corresponding to the state
|ψ〉 would be ψ = (r, θ, φ), where r = |ψ| is the length of the Bloch vector. It
may of course be represented in Cartesian coordinates as well. By convention, the
z axis is then said to be the axis aligned with the |0〉 and |1〉 states. The x and
y axis are somewhat arbitrary, except that they lie in the equatorial plane of the
Bloch sphere and are orthogonal to each other.

There is a time dependence in the Bloch vector due to the intrinsic angular
frequency ω0 of a two level quantum system. As a result the Bloch vector rotates
at an angular frequency ω0. Usually, however, a rotating frame is chosen as basis
and as such we do not have to consider this rotation.
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In our case, the qubit is represented as two energy levels in a strontium ion.
The angular frequency of this transition is the ω0 discussed above. The electronic
state is then manipulated using lasers with an angular frequency ω which might be
close but not equal to ω0. In other words, we have ω ≈ ω0. Such a light field causes
the Bloch vector to rotate, even in the rotational basis of the qubit. Specifically
it will slowly rotate around the z axis with angular frequency ∆ω = ω − ω0.
Technically the interaction also allows the possibility for the Bloch vector to rotate
at ω + ω0 ≈ 2ω0, but this would be highly non-resonant and can be neglected.
Neglecting ω + ω0 is called the rotating wave approximation.

One thing to note with the Bloch sphere is that orthogonal states are anti-
parallel when represented on the Bloch sphere. |0〉 and |1〉 appear as the north
and south pole, along the same axis on the Bloch sphere. The vectors representing
them would, however, be anti-parallel.

A.2 Unitary operations and rotations of qubits

A unitary operation U on a qubit state |ψ〉 can be considered as a rotation. On
the Bloch sphere this can be seen directly, since unitary operations corresponds to
rotating the Bloch vector. This is commonly used in quantum computation and
quantum information to illustrate what a unitary operation does to a single qubit.

Consider a case where we have prepared the qubit in state |1〉. If we then apply
a unitary operation Uπ/2 that transforms |1〉 into |+〉, then on the Bloch sphere we
have rotated the Bloch vector from the north |1〉 state to the equatorial |+〉 state.
This corresponds to a rotation of π/2 radians of the Bloch vector and is called a
π/2-pulse. Similarly a unitary operation Uπ that takes the state from |1〉 to |0〉
would be called a π-pulse, since it rotates the Bloch vector by π radians around
the equator. In general, if a unitary operation rotates the state by Θ radians, then
it is called a Θ-pulse2.

It should be noted that not all operations will conserve the length of the Bloch
vector. In particular dephasing processes effectively shrinks the Bloch vector in
x and y direction due to averaging over different phases φ. This is a statistical
phenomenon due to how repeated operations can accumulate different amount of
phase and thus give different results. When averaged these results give an effec-
tively smaller Bloch vector due to superposition states transforming into statistical
mixtures.

Other damping processes then dephasing can be imagined as other deforma-
tions of the Bloch sphere [1].

2Here Θ is just a placeholder for an angle, not part of the name.
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Appendix B

Average of a noisy exponential

This appendix derives equation (6.11). To do so we make a Taylor expansion of
exp(−2iφ(t)), where φ(t) = 1

2~

∫ t
0
dt′∆E(t′) and ∆E(t) is a Gaussian process. This

gives us

exp(−2iφ) =
∞∑
n=0

(−2i)nφn

n!
=
∞∑
k=0

(−4)kφ2k

(2k)!
+
∞∑
k=0

(−2i)2k+1φ2k+1

(2k + 1)!
(B.1)

where in the last step we split up the Taylor expansion in even and odd terms.
Since ∆E(t) is a Gaussian process we can apply the Gaussian moment theorem[18]

on the terms φ2k and φ2k+1. For even terms we get that φ2k = (2k−1)!!φ2
k
, where

(2k − 1)!! is the semifactorial, while for the odd terms φ2k+1 = 0. Equation (B.1)
then becomes

exp(−2iφ) =
∞∑
k=0

(−2i)2k(2k − 1)!!φ2
k

(2k)!
(B.2)

For an integer m ≥ 0 we have that m!! = m!/(m− 1)!!. Additionally for an even
integer m = 2k, where k ≥ 0, we can express the semifactorial as m!! = 2kk!.
Using these we can determine that

(2k − 1)!!

(2k)!
=

1

(2k)!!
=

1

2kk!
. (B.3)

Combining equations (B.2) and (B.3) finally gives us

exp(−2iφ) =
∞∑
k=0

(−4)kφ2
k

2kk!
=
∞∑
k=0

(−2φ2)k

k!
= exp

(
−2φ2

)
. (B.4)
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