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Abstract

A stable qubit laser is essential in order to perform high fidelity qubit operations
on trapped ions. In this thesis an experimental setup for a new qubit laser at
674 nm is built and the laser frequency is stabilised by locking it to a high finesse
cavity using the Pound-Drever-Hall technique. An upper limit of the qubit laser
linewidth of (123±6) Hz was obtained by a heterodyne beat note measurement
between the new qubit laser and the old one. The laser and high finesse cavity
were further characterised and experiments on an ion were conducted using the
new laser. The ion had a coherence time of τ = (1050 ± 90)µs, when it was
probed using the new laser by driving Rabi oscillations between electronic states
of the 88Sr+ ion.
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Chapter 1

Introduction

In the past 50 years quantum computers have been developed from an initial
idea to the realisation of small quantum processors. One of the most successful
experimental platforms for implementing a prototype quantum computer is a
system of trapped atomic ions. The idea of using trapped ions for quantum com-
putation was proposed in 1995 by Cirac and Zoller [1] who developed a scheme
for realizing a two-qubit gate with ions by exchanging quantum information via
their common motion in a trapping potential. Since then, trapped ions has
become one of the leading platforms in the race toward realizing a quantum
computer, a machine that is more powerful than a classical computer. In 2000
DiVincenzo [2] outlined certain conditions which must be fulfilled for building
a quantum computer. They are

1. A scalable system with well characterized qubits.

2. Ability to initialize qubits in a state that can be reliably reproduced.

3. Decoherence times much longer than the gate operation time.

4. A ”universal” set of quantum gates.

5. A qubit-specific measurement capability.

DiVincenzo also outlined two additional criteria necessary for quantum net-
works, but since this thesis focuses on the laser manipulation of qubit states
and not on quantum networks they do not concern us here. For trapped ions,
the last 4 criteria are fulfilled by using the ions internal electronic states for
storing qubits and coupling several qubits via their common vibrational modes.
However, when increasing the number of ions, the number of motional modes
also increases and the mode spectrum of the system becomes more crowded.
Therefore, the control of the coupling to vibrational modes becomes increas-
ingly difficult and the gate operations slow down. This limits the potential for
scalability. In 2008, Müller et al.[3] proposed using the dipole-dipole interaction
between highly-excited Rydberg ions to conduct a two-qubit gate instead of us-
ing the vibrational modes of ordinary ions. This coupling mechanism does not
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slow down for more ions and thus has potential to avoid the scalability prob-
lem. The ion trapping experiment at Stockholm University was built to perform
quantum computation via Rydberg interaction. The qubits are encoded in low-
lying electronic states and for coupling qubits the ions are excited to Rydberg
states [4]. This thesis focuses on manipulating the quantum states of qubits in
low-lying electronic states. It involves setting up an improved new laser system
for addressing the transition between qubit states, as well as characterising the
new laser. This laser features an intra-cavity electro-optic modulator (EOM)
which increases the feedback bandwidth for laser stabilisation. The EOM shifts
the servo-bumps of the stabilisation to larger frequencies and reduces their am-
plitude. This results in a cleaner spectrum of the laser and thus gives a more
precise qubit manipulation.
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Chapter 2

Theoretical background

This chapter outlines the theoretical background of the thesis. The first section
(section 2.1) describes how trapped strontium 88Sr+ ions can be used in quan-
tum computation and measurements for determining some limitations of the
system. The second section (section 2.2) focuses on optical cavities and laser
stabilisation. It describes an experimental technique for stabilising a laser using
an optical cavity. The third section (section 2.3) describes the control system
used to control different parameters related to the stabilisation of the laser such
as temperature.

2.1 Ions

2.1.1 Trapped ions as qubits

In classical computers, the smallest unit for storing information is a bit whose
states are usually represented as 0 and 1. In quantum computers the smallest
unit for storing information is a quantum bit or qubit. A qubit is stored in
a quantum system which has two well-defined states labelled |0〉 and |1〉, they
provide the basis for the qubit [5]. The qubit can be in state |0〉, state |1〉 or in
a superposition state of the two

|ψ〉 = c0 |0〉+ c1 |1〉 (2.1)

where c0 and c1 are complex numbers that obey the normalisation condition
|c0|2 + |c1|2 = 1.

In the experimental setup presented in this thesis the qubits are encoded in
electronic states of a strontium 88Sr+ ion trapped in a linear Paul trap. The
qubit state |0〉 corresponds to a Zeeman sublevel of the 4D5/2 metastable state
of the ion and the state |1〉 corresponds to a Zeeman sublevel of the 5S1/2 ground
state. Simple qubit quantum gate operations are implemented using laser pulses
at 674 nm that drive the qubit transition 5S1/2 ↔ 4D5/2 (See figure 2.2 for more
details).
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2.1.2 The ion trap

The linear Paul trap operates with a combination of static and oscillating elec-
tric quadrupole fields that dynamically confine a string of ions [4]. Figure 2.1
shows the trap setup. The voltages applied to the blade electrodes generate
the oscillating electric quadrupole field confining the ions in a two-dimensional
radial quadrupole potential

Φ(x, y, z) =
Urf

2r2
0

cos(Ωrft)(x
2 − y2) (2.2)

where Urf is the rf-potential difference between opposing electrodes, r0 is the
minimum distance between the trapping axis and the electrodes and Ωrf is the
frequency of the rf-potential, in the experiment typically Ωrf ≈ 2π × 18.2 MHz.
The voltages applied to the endcap electrodes generate the static electric field
that traps the ions along the z-axis. Positive voltages are applied to the endcaps
so that the positive ions are repelled by the endcaps and thus trapped in the
z-direction. The oscillating field together with the static field traps the ions in
all three dimensions. The motion of the ions in the radial directions (x and y)
consists of two parts: the harmonic motion with frequencies ωx, ωy called the
secular motion and the faster driven motion of frequency Ωrf called micromotion.
In the axial (z) direction there is no oscillating field and therefore the motion
is just the secular motion with frequency ωz. (For more details on the trap
setup see the master thesis of Fabian Pokorny [6] and the PhD-thesis by Gerard
Higgins [4]).

UV UV67
4 
nm

Blade

Endcap

PMT

422 nm, 1033 nm 
and 1092 nm

Figure 2.1: The ion trap setup with the laser directions, the photomultiplier tube
(PMT), endcap electrodes and blade electrodes.

2.1.3 The Zeeman effect and laser transitions

For atomic levels in the LS-coupling regime with quantum numbers L, S and
J , there are (2J + 1) degenerate mJ -states. By applying a magnetic field this
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degeneracy can be lifted resulting in the splitting of the atomic levels into mag-
netic sub-levels. This effect is called the Zeeman effect and the splitting of the
sub-levels is referred to as the Zeeman splitting [5]. The energy of an atom in a
magnetic field B applied along the z-axis is then

∆E = −µ ·B = −µzBz (2.3)

where µ is the magnetic dipole moment of the atom and µz is its z-component
given by

µz = −gµBmJ (2.4)

with µB the Bohr magneton and the g-factor which can be well approximated
by the Landé g-factor gJ

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.5)

Finally, the energy becomes

∆E = gJµBBzmJ (2.6)

Figure 2.2 shows an energy level scheme for 88Sr+ with the Zeeman splitting of
the levels with the magnetic quantum numbers mJ as well as the qubit states.

5S1/2

5P1/2

4D5/2

mJ
1/2

-1/2

-3/2
-1/2
1/2

-5/2

3/2
5/2

-1/2
1/2

mJ

mJ

-3/2
-1/2
1/2
3/2

4D3/2

-3/2
-1/2
1/2
3/2

5P3/2

422 nm

674 nm

1033 nm
1092 nm

Figure 2.2: The energy level scheme for 88Sr+ with the Zeeman splitting of the levels.
The wavelengths correspond to the laser fields which drive the respective transitions.

The laser transitions in figure 2.2 are important for qubit operations. The
sub-levels that are used for state |1〉 and state |0〉 depends on what the qubit
is going to be used for. An example of a transition used in this thesis is the
5S1/2(mJ = −1/2)↔ 4D5/2(mJ = −5/2) transition, but any allowed transition
could in principle be used. The qubit state is manipulated using the 674 nm
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laser which is called the qubit laser. The 422 nm laser is used for state detection.
Since the natural decay rate of the 5P1/2 state is 2π × 22MHz, there are a lot
of photons scattered in a short time interval when the transition 5S1/2 ↔ 5P1/2

is driven strongly by the 422 nm laser. These photons can be detected using
a camera or a photomultiplier tube. The 422 nm laser is also employed for
Doppler cooling. The 1092 nm laser pumps the ion from 4D3/2 back to 5S1/2

closing the cooling-detection cycle. It counteracts optical pumping to the 4D3/2

state due to the decay from 5P1/2 to the 4D3/2 state. The 1033 nm laser is
used for initialising the system, it removes population from the 4D5/2 state. It
is also used for shortening the effective 4D5/2 lifetime during resolved sideband
cooling [4].

2.1.4 Ion and laser interaction

An electromagnetic field on resonance to a two-level quantum system can drive
the quantum system and leads to a cyclic behaviour. As it evolves in time the
state of the system will oscillate between the two levels at a frequency called the
Rabi frequency (section 3.2.3 shows the experimental data of Rabi oscillations).
Over time the amplitude of the oscillations will decrease due to the loss of co-
herence between the driving field and the two-level system. Therefore the decay
time of the amplitude of the Rabi oscillations also known as the coherence time
will give an indication of how long the system and the laser field stay coherent.

In a trapped ion experiment the trapping potential of the Paul trap can be
described as a harmonic pseudo-potential and therefore the Hamiltonian of a
trapped ion will contain a harmonic term. The total Hamiltonian of a two-level
system with electronic ground state |g〉 and excited state |e〉 can be described
as a sum of three Hamiltonians, the Hamiltonian of the electronic states of the
ion Ĥe, the quantum harmonic term Ĥm of the ion motion and the Hamiltonian
of the interaction Ĥint between laser field and ion. Following the discussion in
the Master thesis by N. Röck [7]

Ĥ = Ĥe + Ĥm + Ĥint. (2.7)

The Hamiltonian of a two-level system is

Ĥe =
1

2
~ωegσ̂z (2.8)

where ωeg is the laser frequency resonant to the transition |g〉 ↔ |e〉 and σ̂z is
the Pauli matrix. For a single motional mode the Hamiltonian is

Ĥm = ~ω
(
â†â+

1

2

)
= ~ω

(
n̂+

1

2

)
(2.9)

where n̂ is the number operator and ω is the secular motional frequency. In
the experiment described in this thesis the secular motional frequency is the
motional frequency of the ions in the radial direction of the trap described in
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section 2.1.2. Finally, the interaction between the two-level system and the
electromagnetic field is described by

Ĥint =
1

2
~Ω
(
σ̂+ + σ̂−

) (
ei(ωlt−klr̂) + e−i(ωlt−klr̂)

)
(2.10)

where ωl and kl is the frequency and wave number of the laser light, σ̂+ and
σ̂− are Pauli raising and lowering operators, Ω is the Rabi-frequency of the
transition and r̂ is the ion position operator. If r̂ is in the direction of the ion
motion it can be described as

r̂ =

√
~

2mω

(
â† + â

)
(2.11)

The Lamb-Dicke parameter η is defined as

η = kl

√
~

2mω
(2.12)

Therefore the Hamiltonian of the interaction between laser and ion can be de-
scribed as

Ĥint =
1

2
~Ω
(
σ̂+ + σ̂−

) (
ei[ωlt−η(â†+â)] + e−i[ωlt−η(â†+â)]

)
(2.13)

To simplify Ĥint the unitary transform Û = ei(Ĥe+Ĥm)t/~ is used to move from
the Schrödinger picture to the interaction picture where the interaction Hamil-
tonian is ĤI = Û†ĤintÛ . This leads to e±i(ωl±ωeg) terms. In the rotating wave
approximation the ωl + ωeg term is neglected since it oscillates fast and is not
energy conserving. Thus, only the ωl − ωeg � ωeg term is left. The interaction
Hamiltonian becomes

ĤI =
1

2
~Ω
(
σ̂+e−i∆te[iη(âe

−iωt+â†eiωt)] + h.c.
)

(2.14)

where ∆ = ωl − ωeg and h.c. is the Hermitian conjugate. Assuming the ion is
spatially confined to a region significantly smaller than the wavelength of the
laser field, then it is in the so called Lamb-Dicke regime. This regime is defined
by the condition

η2 (2n+ 1)� 1 (2.15)

where n is the phonon occupation number. In this regime, the second exponen-
tial term, in equation (2.14) can be Taylor-expanded to

eiη(âe
−iωt+â†eiωt) = 1 + iη

(
âe−iωt + â†eiωt

)
− η2

2

(
âe−iωt + â†eiωt

)2
+O(η3).

(2.16)
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Considering only the first and second order terms in equation (2.16) and insert-
ing those into equation (2.14), the interaction Hamiltonian becomes

ĤI =
1

2
~Ω
(
1− η2â†â

) (
σ̂+e−i∆t + σ̂−ei∆t

)
+ i

~Ωη

2

(
âe−iωt + â†eiωt

)
σ̂+e−i∆t

− i~Ωη

2

(
âe−iωt + â†eiωt

)
σ̂−ei∆t

− ~Ωη2

4

(
â2e−2iωt + (â†)2e2iωt

) (
σ̂+e−i∆t + σ̂−ei∆t

)
(2.17)

From this expression three important cases can be determined.

� When ∆ = 0, the laser frequency is tuned to resonance and the |g, n〉 ↔
|e, n〉 transition is driven as shown in figure 2.5. This is called the carrier
transition. Assuming that the coupling strength of the terms that oscil-
lates off-resonantly are much smaller than the detuning and therefore can
be neglected, the equation (2.17) can be reduced to

ĤIcarrier =
1

2
~Ωn,n

(
σ̂+ + σ̂−

)
with Ωn,n = Ω

(
1− η2n

)
(2.18)

where Ωn,n is the coupling strength and 〈â†â〉 = n is the phonon occu-
pation number as described in the condition for the Lamb-Dicke regime
(2.15).

� When ∆ = −ω, the laser frequency is detuned to drive the transition
|g, n〉 ↔ |e, n− 1〉 (See figure 2.5). This is called the first red sideband. By
once again neglecting the terms that oscillates off-resonantly, the equation
(2.17) can be reduced to

ĤIred =
1

2
i~Ωn,n−1 (|e, n− 1〉 〈g, n| − |g, n〉 〈e, n− 1|) (2.19)

with Ωn,n−1 = η
√
nΩ

� When ∆ = +ω, the laser frequency is detuned to drive the transition
|g, n〉 ↔ |e, n+ 1〉 (See figure 2.5). This is called the first blue sideband.
By following the same argument as above the equation (2.17) can be re-
duced to

ĤIblue
=

1

2
i~Ωn,n+1 (|e, n+ 1〉 〈g, n| − |g, n〉 〈e, n+ 1|) (2.20)

with Ωn,n+1 = η
√
n+ 1Ω
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Figure 2.3: A frequency spectrum showing the carrier and sidebands for the qubit
transition 5S1/2 ↔ 4D5/2.

Figure 2.3 shows the frequency spectrum of the qubit transition 5S1/2 ↔ 4D5/2

with the carrier, the red sideband and the blue sideband. The spectrum was
kindly provided by Gerard Higgins.

n=0

n=1

n=2

n=3

n=4

n=5

Figure 2.4: The simplified Hilbert space of a trapped ion is represented by a two-
level system coupled to a harmonic trapping potential. The combined Hilbert state is
spanned by the product states of the two sub-Hilbert spaces.

Figure 2.4 shows a two-level system, in this case the qubit transition 5S1/2 ↔
4D5/2, coupled to a harmonic trapping potential. The coupling between and
laser field can be illustrated in a “ladder scheme“ of the energy levels as depicted
in figure 2.5.
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Figure 2.5: A ”ladder scheme” for a trapped ion with the carrier transition in black
and the red and blue sideband transitions in the respective colours, as well as the
coupling strength for each case.

2.1.5 Ramsey experiment

Ramsey pulse sequences are generally used to characterise the coherence time
(dephasing time) of a two-level system. A Ramsey-type experiment consists
of two resonant π/2-pulses with some waiting time in between. In the case of
a two level system starting from state |1〉 (See figure 2.6a) the state is driven
to a superposition state (|0〉+ |1〉) /

√
2 after the first pulse (See figure 2.6b).

During the waiting time the state evolves picking up an extra phase due to
e.g. laser frequency or magnetic field fluctuations (See figure 2.6c). Because of
the dephasing of the system the final state after the second pulse will not be
perfectly |0〉, but rather some superposition or mixed state, it depends on the
accumulated phase (See figure 2.6d). By taking multiple measurements while
increasing the waiting time between the pulses the contrast will decay. This
decay is related to the coherence time[4]. The decay type will depend on the
type of noise that dominates the decoherence process. If the dominant noise
is white, the decay will follow an exponential distribution. However if there is
temporal correlation in the noise it might follow e.g. a Gaussian distribution.
(For more details on the theoretical background of the decay see the master
thesis of Anders Lindberg [8]).

10



x
y

|0

|1

(a)

x
y

|0

|1

(b)

x
y

|0

|1

(c)

x
y

|0

|1

(d)

Figure 2.6: (a) The system is in the initial state |1〉. (b) A π/2-pulse takes the
system to a superposition state (|0〉+ |1〉) /

√
2. (c) The state evolves randomly during

the wait time. (d) A second π/2-pulse takes the evolved state towards state |0〉,
but depending on the evolution of the state in (c) the final state will be another
superposition state or mixed state.

2.2 Optical cavities and laser stabilisation

In order to manipulate ion qubits a laser with a stable frequency is essential.
Laser frequency fluctuations cause dephasing of the laser with respect to the
qubit, which limits the time during which the qubit can be manipulated suc-
cessfully. The stabilisation of the laser frequency can be done by sending the
laser light onto a stable reference cavity, e.g. a Fabry-Pérot cavity described in
section 2.2.1, and then frequency locking the laser using the Pound-Drever-Hall
technique as described in section 2.2.3.

2.2.1 Fabry-Pérot cavity

Consider a Fabry-Pérot cavity in vacuum that consists of two parallel highly
reflective mirrors at a distance L from each other. When light enters the cavity
it is reflected back and forth inside. Constructive interference will occur when
the light entering and the light circulating inside are in phase with each other
[9]. Only electromagnetic waves where the optical path of one round trip is an
integer multiple q of the wavelength λ will form inside the cavity

λq = 2L (2.21)

Since the frequency of the light in vacuum is related to the wavelength in the
following way

ν =
c

λ
(2.22)

the resonances appear periodically at frequency νq = q
c

2L
. The frequency

separation of these modes is called the free spectral range νFSR

νFSR =
c

2L
(2.23)

The incident electromagnetic wave Ein can be described by

Ein = E0e
i(ωt−kx) (2.24)
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where ω is the angular frequency of the light, t the time, k the wavenumber

(k =
2π

λ
) and x the direction of propagation of the wave. For each round-trip

of the wave inside the cavity, the wave will pick up a phase

ϕ = 2kL =
4πLν

c
=

2πν

νFSR
(2.25)

Each time an electromagnetic wave hits a mirror surface of the cavity, part
of the wave will be transmitted with an amplitude t. The other part will be
reflected with an amplitude r. For simplicity, in the following discussion it is
assumed that the coefficients are the same for both mirrors and that losses can
be ignored i.e. |r|2 + |t|2 = 1 [10].

Ein

rEin

rt2Ein

r3t2Ein

r5t2Ein

t2Ein

r2t2Ein

r4t2Ein

Eref{ Etrans{
r,t r,t

L

eiφ 

e2iφ 

e3iφ 

eiφ 

e2iφ 

Figure 2.7: A schematic representation of light in a cavity. When light hits a mirror
surface, part of the light is transmitted, part is reflected.

Looking at the schematic representation of the light travelling inside the
cavity shown in figure 2.7, the sum of the reflected beams Eref is

Eref = −rEin + rt2Eine
iϕ + r3t2Eine

i2ϕ + r5t2Eine
i3ϕ + ...

= −rEin + rt2Eine
iϕ
∞∑
q=0

(r2eiϕ)q =

= rEin

(
(r2 + t2)eiϕ − 1

1− r2eiφ

) (2.26)

Likewise, the sum of the transmitted beams Etrans is

Etrans = t2Ein + r2t2Eine
iϕ + r4t2Eine

i2ϕ + ...

= t2Ein

∞∑
q=0

(r2eiϕ)q =

=
t2Ein

1− r2eiϕ

(2.27)
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The reflection coefficient F (ω) can be described as

F (ω) =
Eref

Ein
=

= r

(
t2eiϕ

1− r2eiϕ
− 1

) (2.28)

where ϕ =
ω

νFSR
.

If the losses due to absorption are neglected, the transmission T = t2 and
reflection R = r2 follows the relation R + T = 1. Then the intensity of the
reflected beam Iref is

Iref = |Eref |2 =

= I0r
2

∣∣∣∣ (eiϕ − 1)

1− r2eiϕ

∣∣∣∣2 =

= I0
4r2 sin2

(
ϕ
2

)
(1− r2)2 + 4r2 sin2

(
ϕ
2

) =

= I0
4R sin2

(
ϕ
2

)
(1−R)2 + 4R sin2

(
ϕ
2

)
(2.29)

From the intensity of the reflected beam it follows that the intensity of the
transmitted beam is

Itrans = 1− Iref = I0
(1−R)2

(1−R)2 + 4R sin2
(
ϕ
2

) (2.30)

if the losses can be ignored.

2.2.2 Finesse

The finesse of a cavity is defined as

F =
π
√
R

1−R
(2.31)

and only depends on the reflectivity of the mirrors. Inserting the finesse into
equation (2.29), the reflected beam becomes

Iref(ν) =

I0 sin2

(
πν

νFSR

)
( π

2F

)2

+ sin2

(
πν

νFSR

) . (2.32)

and inserting the finesse (2.31) into equation (2.30), the transmitted beam be-
comes

Itrans(ν) =
I0

1 +

(
2F
π

)2

sin2

(
πν

νFSR

) (2.33)
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The maximum transmitted intensity Imax is achieved when the frequency is an
integer multiple of the free spectral range νFSR. Near resonance, the sine part

of equation (2.33) tends to

(
πν

νFSR

)2

and equation (2.33) becomes a Lorentzian

Itrans(ν) =
(νFSR

2F

)2 Imax

ν2 +
(νFSR

2F

)2 . (2.34)

The full width at half maximum (FWHM) of the Lorentzian resonance line is

∆νc ≈
νFSR

F
(2.35)

The finesse of a cavity can be determined by a ring-down measurement as in
section 3.1.3.

2.2.3 Pound–Drever–Hall technique

The Pound–Drever–Hall (PDH) technique is a common way of stabilising the
frequency of a laser. It is a technique used to lock a laser to a Fabry-Pérot
cavity. (The technique is similar to a method used for frequency stabilisation
of microwave oscillators developed by R.V. Pound in the 1940s) [11]. Figure
2.8 shows a schematic of a PDH setup. The laser light is phase modulated for
example by using an EOM which gets a signal from a local oscillator (LO).
The frequency spectrum of the light then consists of a carrier signal and two
sidebands. The light is sent to a cavity, and the light reflected by the cavity
is reflected onto a photo diode (PD) by a polarising beam splitter (PBS). The
photodiode signal is multiplied with the signal from the same local oscillator
used for the modulation in a mixer. The signal from the mixer is filtered using
a low pass filter and and the filtered signal provides the error signal for the
feedback loop. The error signal describes how far the carrier is off resonance
with respect to the cavity and is used to provide feedback to the system using
a PID controller (See section 2.3.1).
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Figure 2.8: A schematic representation of a PDH setup.

The mathematical description of the technique follows E.D. Black (2001)
[11]. The phase modulated laser beam can be described as

Ein = E0e
i(ωt+β sin(Ωmodt)) (2.36)

Where β is the modulation depth and Ωmod is the frequency of the modulation.
For β � 1 equation (2.36) can be expanded to the first order using Bessel
functions of the first kind Jn

Ein ≈ E0e
iωt [J0(β) + 2iJ1(β) sin(Ωmodt)] =

= E0

[
J0(β)eiωt + J1(β)ei(ω+Ωmod)t − J1(β)ei(ω−Ωmod)t

]
Assuming the incident intensity is constant, the total power of the incident beam
can be defined as P0 ≡ |E0|2. The power in the carrier is

Pc = J0(β)2P0 (2.37)

and the power in each first-order sideband becomes

Ps = J1(β)2P0 (2.38)

For small modulation depths (β < 1), the power is almost exclusively in the
carrier and the first-order sidebands. Then the total reflected electric field is

Eref = E0

[
F (ω)J0(β)eiωt+

+ F (ω + Ωmod)J1(β)ei(ω+Ωmod)t − F (ω − Ωmod)J1(β)ei(ω−Ωmod)t
] (2.39)

Where F is the reflection coefficient from equation (2.28). The power in the
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reflected beam is Pref = |Eref |2

Pref = Pc |F (ω)|2 + Ps{|F (ω + Ωmod)|2 + |F (ω − Ωmod)|2}+

+ 2
√
PcPs{Re [F (ω)F ∗(ω + Ωmod)− F ∗(ω)F (ω − Ωmod)] cos(Ωmodt)+

+ Im [F (ω)F ∗(ω + Ωmod)− F ∗(ω)F (ω − Ωmod)] sin(Ωmodt)}+
+O(2Ωmod)

(2.40)
The terms in the equation above arise from adding three waves of different
frequencies, the carrier ω and the two sidebands ω±Ωmod. The terms oscillating
with Ωmod originate from the carrier interfering with the left and right sideband.
The 2Ωmod term comes from the sidebands interfering with each other. The two
terms that oscillate at the modulation sin(Ωmodt) and cos(Ωmodt) are of interest
since they contain the phase information of the reflected carrier signal. By using
a mixer and a low-pass filter, these oscillating terms can be isolated. The mixer
will form a product of its inputs which means that in the case of two sine waves
the output of the mixer is

sin(Ωmodt) sin(Ω′t) =
1

2
{cos [(Ωmod − Ω′)t]− cos [(Ωmod + Ω′)t]} (2.41)

where Ωmod is the modulation signal and Ω′ is the reference. If Ωmod ' Ω′ (which
is the interesting case) the cos [(Ωmod − Ω′)t] term will be a low-frequency signal
that will pass through a following low-pass filter, while the cos [(Ωmod + Ω′)t]
part will be filtered out. In the case of mixing a sine with a cosine the output
of the mixer is

sin(Ωmodt) cos(Ω′t) =
1

2
{sin [(Ωmod − Ω′)t]− sin [(Ωmod + Ω′)t]} (2.42)

when Ωmod = Ω′ the low-frequency signal vanishes. For low modulation fre-
quencies the signals going into the mixer must be in phase with each other in
order to observe a signal i.e. a sine with a sine and a cosine with cosine. In
reality, this is true even for high modulation frequencies, since any delay in one
of the signals will cause a phase shift which distorts the output signal of the
mixer. Therefore the phase of the two signals is analysed and matched before
the mixer. In equation 2.40 the imaginary part will give a larger slope around
Ωmod ' Ω′ compared to the real part and therefore the imaginary part is more
suitable for the error signal. The remaining signal consists of the sine term of
equation (2.40)

ε = 2
√
PcPsIm{F (ω)F ∗(ω + Ωmod)− F ∗(ω)F (ω − Ωmod)} (2.43)

This is known as the PDH error signal. Figure 2.9 shows the error signal as
a function of the frequency detuning with νFSR = 1 GHz for F = 1, 000 and
F = 10, 000. The error signal correspond to the cavity response of laser fre-
quency fluctuations in terms of reflected and transmitted optical power, where
the locking point is the zero-crossing of the slope between the peak and the dip

16



of the carrier part of the signal. As shown in figure 2.9b, the gradient of the
slope between the peak and the dip depends on the finesse. Since a steeper
slope will generate a larger cavity response to a small laser frequency shift the
sensitivity of the lock depends on the steepness of the slope. Therefore a higher
finesse of the cavity enables a more accurate lock of the laser frequency.
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Figure 2.9: The theory curve of the error signal (equation (2.43)) as a function of the
frequency detuning for F = 1, 000 (blue) and F = 10, 000 (orange) with parameters
νFSR = 1 GHz and Ωmod = 2π × 20 MHz, where (b) is a zoomed-in version of (a)
near the resonance.

If the carrier is near-resonant and the sidebands are modulated at a frequency
much larger than the cavity linewidth one can assume that the sidebands are
totally reflected, F (ω ± Ω) ≈ −1 then

F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω) ≈ −2iIm{F (ω)} (2.44)

This gives
Pref ≈ 2Ps − 4

√
PcPsIm{F (ω)} sin(Ωt) (2.45)

Since the carrier is near-resonant

ω

νFSR
= 2πq +

δω′

νFSR
(2.46)

where q is an integer and δω′ is the frequency deviation of the laser from the
resonance. The approximation F = π/(1 − r2) can be made by assuming that
the finesse of the cavity is high. Using equation for the cavity linewidth (2.35)
the reflection coefficient F becomes

F ≈ i

π

δω′

∆νc
(2.47)

For δω′ � ∆νc the error signal is approximately

ε ≈ − 4

π

√
PcPs

δω′

∆νc
(2.48)

From equation (2.48) as well as in figure 2.9 it is shown that ε depends linearly
on the frequency deviation δω′, ε depends on the cavity linewidth and the power.
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2.3 Control systems

2.3.1 The Proportional-Integral-Derivative controller

A Proportional-Integral-Derivative (PID) controller is used to apply feedback
to a process and consists of three terms, the proportional (P), the integral (I)
and the derivative (D). As shown in figure 2.10, a reference signal r(t) which is
the desired set-point of the process is fed to the control system. The reference
signal together with the process variable y(t) which is the sensed position of
the process creates the error signal e(t) = r(t) − y(t). The error signal is used
to derive three correction terms P, I and D. The sum of P, I and D is used to
adjust the process via control variable uc(t). The process reacts on uc(t) which
gives a new y(t) and the control loop is complete [12]. The control actions of
the three terms P, I and D are described below:

� The proportional term gives a correction proportional to the error signal
and the manipulated control variable is

uP(t) = kPe(t) (2.49)

where kP is the proportional gain. The term is proportional to the gain
of the controller i.e. a large value of the proportional gain gives a large
output response.

� The integral term gives a correction proportional to the integral of the
error signal, therefore the control variable is

uI(t) = kI

∫ t

−t
e(t′)dt′ (2.50)

where kI is the integral gain. The term is proportional to the magnitude
and the duration of the error. This speeds up the set-point adjustment of
the system.

� The derivative term gives a correction proportional to the time-derivative
of the error signal, therefore the control variable is

uD(t) = kD
de(t)

dt
(2.51)

where kD is the derivative gain. The term calculates the slope of the error
and therefore it predicts the system behaviour over time. This speeds up
the response of the controller, because a fast change in the error will give
a fast response of the controller.

Therefore the total control variable uc(t) which gives the control action of the
controller is

uc(t) = kPe(t) + kI

∫ t

−t
e(t′)dt′ + kD

de(t)

dt
(2.52)
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Process− +

Figure 2.10: A block diagram of a PID controller.

The PID transfer function in the Laplace domain is

L(s) = kP +
kI

s
+

kDs

s+ p

=
(kP + kD)s2 + (kPp+ kI)s+ kIp

s2 + sp

(2.53)

The p in the derivative part of the transfer function is a low-pass filter to avoid
high-frequency noise to propagate through the controller. Since the derivative
term enables a quick response to a quick change in the system [12]. Figure 2.11
shows the Bode phase plot of a PID controller. A Bode phase plot describes the
phase shift of the frequency response of a system. In figure 2.11 the non-zero
values of kP, kI and kD are kP = kI = kD = 0.5.
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Figure 2.11: A Bode phase plot of a P, I, PI, PD and PID controller with the
characteristic frequency ωc = 4000π Hz. When kP, kI and kD are non-zero kP = kI =
kD = 0.5.

In this thesis a PID controller was used as a part of the feedback loop used to
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lock the laser to a high finesse cavity in the PDH setup. The setup is described
in section 3.1.1. A PID controller was also used to stabilise the temperature of
the cavity, as described in section 3.1.5.
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Chapter 3

Experimental results

3.1 Laser frequency stabilisation and character-
isation

In the trapped ion experiment there are two laser setups, the old 674 nm laser
(674 laser I) which is locked to the old cavity (cavity I) and the new 674 nm laser
(674 laser II) which is locked to the new cavity (cavity II). In this thesis the 674
laser II system is set up and the 674 laser II is characterised. Figure 3.1 shows
the setup of the 674 laser II system. The 674 laser II is a diode laser at 674 nm
from Toptica that arrived on the 2nd of May 2019. As shown in figure 3.2 the
laser consists of a laser diode, an electro-optic modulator (EOM) and a grating.
The diode, EOM and grating are all inside a cavity. The EOM was placed
inside the cavity to reduce servo-bumps. A beam splitter (BS) splits the light
from the laser cavity into one part that can be used directly and the other part
is guided by mirrors to a tapered amplifier (TA) that amplifies the intensity
of the light. Two optical isolators (OI) are also used to block back-reflected
light from hitting the diode or the TA. Cavity II is an ultra-stable high-finesse
optical reference cavity from Menlo Systems that arrived on the 29th of April
2019. It has a cavity spacer made of ultra-low expansion (ULE) glass with a
linear shrinking drift rate of approximately 0.15 Hz/s and mirror surfaces made
out of fused silica. The cavity is situated inside a vacuum chamber (shown in
figure 3.1b) to further reduce environmental effects. The cavity finesse specified
by the company is > 200, 000 and the cavity length is L = 121 mm.
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(a) (b)

Figure 3.1: Pictures of the 674 laser II and cavity II setup (a) shows the setup after
the 674 laser II and (b)shows the vacuum chamber of cavity II and the setup before
the cavity.

BS

TA

EOM Diode

OI

OI

Grating Cavity

Figure 3.2: A schematic of the 674 laser II.

3.1.1 The Pound-Drever-Hall signal

The PDH signal was generated using the setup shown in figure 3.3. The setup
uses the light from the 674 laser II (for more details on the laser see section
3.1) before the tapered amplifier (TA) and therefore the light after the TA was
blocked. The light emitted by the laser goes through a λ

2 wave-plate and a Glan-
Thompson polariser (GT) to ensure clean linear polarisation. Then the light
goes through an electro-optic modulator (EOM) which generates the sidebands
at the drive frequency of the signal and is guided through a single-mode fiber to
the cavity setup. In the cavity setup the light enters cavity II and the reflected
light is directed to the photodiode (PD1) via a polarising beam splitter (PBS).
The PD signal is sent to the mixer. The mixer also takes a reference signal
from a local oscillator and produces the error signal used in the PID controller
(Toptica FALC) that provides the feedback to the laser.
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Figure 3.3: A schematic of the laser frequency stabilisation setup.

Figure 3.4 shows the measured PDH error signal and the DC-component of
the photodiode signal in reflection. The sidebands in the figures correspond to
the driving frequency of the EOM at ±19.44 MHz when scanning the voltage
of the piezo of the laser grating over the resonance of the cavity. The sidebands
in the reflection signal in Figure 3.4b are roughly 7% of the carrier dip for the
left dip and 6% of the carrier dip for the right dip. This means that

Ps

Pc
=
J1(β)2P0

J0(β)2P0
=
J1(β)2

J0(β)2
' 0.06 (3.1)

the modulation depth β is small and can be approximated as

β ' 1

2

J1(β)

J0(β)
=

√
0.06

2
≈ 0.1 (3.2)

The experimental data in figure 3.4 resembles the theory signal plotted in figure
2.9.
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Figure 3.4: (a) The PDH error signal with sidebands corresponding to ±19.44 MHz
frequency offset when scanning the voltage of the piezo of the laser grating over the
resonance of the cavity. (b) The low-frequency component of the photodiode signal in
reflection (the RF-component is sent to the mixer). The left sideband is roughly 7%
of the carrier dip and the right sideband is 6% of the carrier dip.

3.1.2 The free spectral range

The free spectral range (FSR) of the cavity was measured using the 674 laser
II locked to different TEM00-modes of cavity II. The frequency of the laser was
measured using the wavelength meter(High Finesse WS6-200). Then the laser
frequency was changed to the next TEM00-mode, the laser was locked again
and the measurement was repeated for this mode. From the slope of the fitted
data points plotted in figure 3.5 the νFSR was determined

νFSR = (1.241± 0.003) GHz (3.3)

The wavelength meter has a specified absolute accuracy of < 200 MHz. Each
measurement was performed by first calibrating the wavelength meter with 674
laser I, then take a set of measurements using a single mode fiber coupled to
the wavelength meter without a fiber switch, reading out the wavelength meter
via a USB to obtain more digits and then averaging. Calculating the FSR of
cavity II using equation (2.23) with the cavity length specified by the company
with L = 121 mm gives νFSR ≈ 1.239 GHz, this is consistent with the measured
FSR.
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Figure 3.5: The relative frequency change as a function of mode number with error-
bars at 200 MHz which is the upper limit for the specified absolute accuracy of the
wavelength meter, this is too small to be visible in this plot. The slope corresponds
to a νFSR = (1.241± 0.003) =GHz.
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Figure 3.6: The same plot as in figure 3.5 when subtracting the slope, with same
the errorbars at 200 MHz. The root mean square of the measurement is ∇RMS = 40
MHz.

The errorbars for the data points in figure 3.5 are at 200 MHz and are
therefore not visible in the plot. They are the upper limit for the specified
absolute accuracy of the wavelength meter. However, the uncertainties obtained
by taking several measurements of the same point and then use the standard
deviation of the measurements were on the order of 800 kHz, this corresponds to
the precision of the measurement. The accuracy of the measurement, however
is limited by the calibration of the wavelength meter. Figure 3.6 shows the FSR
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measurement when subtracting the slope in figure 3.5. As shown in figure 3.6
there is some scattering with a root mean square of ∇RMS = 40 MHz which
seems to be the accuracy of the measurement. This might explain why the
standard deviation of the set of measurements for each datapoint is much smaller
than the uncertainty in the FSR measurement.

3.1.3 Determining the cavity linewidth using a ring-down
measurement

The light field decay time can be measured by first sending light into the cavity
and then blocking the light going to the cavity while recording the transmission
signal. The light inside the cavity and thus the light transmitted by the cavity
decays exponentially as

I = I0e
−t/τ (3.4)

where I0 is the initial intensity, t is the time and τ is the cavity decay time.
From the cavity decay time the cavity linewidth ∆νc follows

∆νc =
1

2πτ
(3.5)

When this measurement was taken the lock to cavity II of the 674 laser II was
still very unstable. Therefore this experiment was performed using laser light
derived from the 674 laser I, which was locked to cavity I to ensure stability of the
laser lock. Some light from the 674 laser I was sent to cavity II. By using several
acousto-optical modulators (AOMs), the frequency of the light was adjusted to
match the frequency of the TEM00-mode of cavity II. One of the AOMs was
used to switch off the light going to the cavity and the transmission signal was
measured using a photodiode (PD2 in figure 3.3). The photon decay-time τ of
the cavity was determined by fitting the exponential in figure 3.7 to equation
(3.4). By taking multiple sets of the cavity ring-down measurement the averaged
result of the photon decay time was

τ = (5.13± 0.15) µs (3.6)

The result was then used to calculate the cavity linewidth using equation (3.5)
and the finesse using equation (2.35) the results were

∆νc = (30, 700± 800) Hz

F = (40, 000± 1, 000)

The finesse stated by the company was > 200, 000, which is significantly higher
than 40, 000. This means that the reflectivity of the mirrors is lower than
promised either due to absorption in the mirror coatings or due to scattering
losses for instance by dust on the mirrors. A consequence of a low finesse is
that the achievable locked-laser linewidth is broader. Therefore the cavity will
be sent back to the company for testing.
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Figure 3.7: The ringdown measurement of cavity II.

3.1.4 Measurement of the cavity linewidth using the sig-
nal of the transmission photodiode.

As a consistency check, the cavity linewidth was measured using a different
method. For the same reasons as in section 3.1.3 the 674 laser I was used to
ensure stability of the laser lock. Figure 3.8 shows the signal of the transmission
photodiode (PD2) when scanning the laser frequency over the resonance of the
TEM00-mode of cavity II using an AOM. The data was fitted to a Lorentzian
function (see equation (2.34)) and the linewidth obtained was (34, 700 ± 200)
Hz. This is slightly broader than the linewidth obtained from the ring-down
measurement which may be explained by the fact that this measurement is more
sensitive to laser frequency noise that causes the linewidth to be overestimated.
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Figure 3.8: Scanning the laser frequency over the resonance of the TEM00-mode of
cavity II.

3.1.5 Stabilising the temperature of the cavity

The cavity was placed inside a vacuum chamber to isolate it from the envi-
ronment. In order to control the temperature, the cavity was connected to
a Peltier element and two temperature sensors (NTC thermistors) inside the
vacuum chamber. The Peltier element and the two temperature sensors were
connected to a temperature controller (SRS PTC10) using a foil-shielded twisted
pair cable to reduce noise and cross-talk between the cables (For more informa-
tion see the appendix). In this setup the Peltier element is used for adjusting
the temperature of the cavity, effectively converting an applied current from
the temperature controller to a heating or cooling of the cavity. The tempera-
ture sensors are used for measuring the temperature effectively giving feedback
to the temperature controller. The temperature controller used a PID control
loop for the feedback (See section 2.3.1). Figure 3.9 shows the response of the
temperature controller for different values of P, I and D.
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Figure 3.9: The normalised response of the temperature controller when changing
the temperature as a function of time for different values of P, I and D.

As shown in figure 3.9 they are all slightly underdamped, but the response
function still overshoots a little and stabilises quite well after that. It was diffi-
cult to find a response function that was not either underdamped or overdamped,
but still stabilises within the same time as the functions shown in figure 3.9.

3.1.6 The zero-expansion-point of the cavity

When a laser is locked to a cavity, the stability of the length of the cavity is
transferred to the stability of the laser frequency. Temperature fluctuations can
cause instability in the length of a cavity as the cavity material expand or shrink
with changes in temperature. The coefficient of thermal expansion (CTE) of
the cavity describes the changes in length of the cavity with a change in temper-
ature. For reference cavities, the cavity spacer is made of ultra-low expansion
glass with a CTE close to zero. Mirrors are optically contacted to avoid thermal
expansion of any glue. The zero-expansion-point (ZEP) is the temperature at
which the CTE of the cavity is zero and therefore the temperature fluctuations
at that point have the smallest effect on the length of the cavity. This experi-
ment used the same type of setup as the one described in section 3.1.3, where
laser light derived from the 674 laser I, which was locked to cavity I to ensure
stability of the laser lock. The frequency of the light was adjusted to match the
frequency of the TEM00-mode of cavity II by using several AOMs and then the
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frequency of the light was measured by the wavelength meter. After measuring
the frequency of the light, the temperature was adjusted to a new set-point.
The next measurement of the frequency of the light at the new set-point was
taken several hours after the previous one to allow the system to stabilise at the
new temperature. The measurement was repeated for different temperatures
and the results are plotted in figure 3.10. The result of the measurements can
be described by the following parabolic function ν = A(T − T0)2 + B. The
coefficients A,B and T0 were determined from the fit of the datapoints plotted
in figure 3.10

A = (0.14± 0.02) MHz/◦C2

B = (406.9± 0.3) MHz

T0 = (33.0± 0.2) ◦C
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Figure 3.10: Measurement of the zero expansion point of the cavity.

3.1.7 The linewidth of the locked laser

An upper bound for the linewidth of the locked laser was determined by using
a beat note between the 674 laser I and the 674 laser II shown in figure 3.11a.
Each laser was locked to its respective cavity. The laser light from each laser
was then frequency shifted using AOMs until their frequency difference was less
than the detection bandwidth of the photodiode. Finally both lasers were sent
onto the same photodiode. By taking multiple beat note measurements and
then fitting each data set to a Lorentzian function the average linewidth of the
beat note was (123± 6) Hz when the external modulation (used for stabilising
674 laser II) was applied to an external EOM. The linewidth was likely to be
broadened by fiber noise since a 10 m fiber was used to send the 674 laser I light
to the beat note setup which used part of the fiber noise cancellation setup that
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Anders Lindberg built [8]. The beat note was also used to optimise lock of 674
laser II to cavity II. This was done by slowly adjusting the PID parameters of
the 674 laser II PID controller (Toptica FALC) one at a time iteratively, while
observing the changes in the beat note of the two lasers. Once the optimal
parameters were found the lock of the cavity had become a lot more stable.

0 1000 2000 3000 4000 5000
Relative frequency (Hz)

100

95

90

85

80

75

70

65

60

Po
we

r s
pe

ct
ra

l d
en

sit
y 

(d
Bm

/H
z)

(a)

120

110

100

90

80

70

Po
w

e
r 

sp
e
ct

ra
l d

e
n
si

ty
 (

d
B
m

/H
z)

0 200000 400000 600000 800000 1000000
Relative frequency (Hz)

(b)

Figure 3.11: (a) The beat note between the 674 laser I and the 674 laser II. (b)
Shows a broader frequency range of the beat note where the servo bumps are visible.

Figure 3.11b shows the beat note in a broader frequency range where servo
bumps are visible. The servo bumps are at 120 kHz away from the central
frequency with 23 dBm/Hz amplitude difference compared to the central peak.

3.2 Experiments on the ion

Figure 3.12 show the schematic of the setup for sending light to the ion in lab 1.
The first part of the setup is the same as described in section 3.1.1. For the light
going to the ion, the light was amplified using a Tapered Amplifier (TA). The
light is coupled into a short fiber and sent to a frequency shifting setup. There
the light goes through a half wave-plate to ensure correct polarization, a PBS
and an acousto-optic modulator (AOM). The frequency shift needed to match
the frequency of the light going to the ion was roughly twice the optimal driving
frequency of the AOM used. Therefore, the AOM was setup in a double-pass
configuration. The +1st order light was reflected back through the AOM, then
the subsequent 1st order was reflected on the PBS and sent through a fiber to
lab 1.

31



PBS

AOM
To Lab 1

Amplifer

To WM

Cavity

Mixer

BS

BS

GT

PD2
PD1

Camera

PBS

EOM

Low pass filter

~Local oscillator

PID controller

Single-mode
fiber

~Local oscillator

0

+1

Frequency stabilisation setup

Laser beam

Electronic signal

BS

TA
OI

OILaser

Cavity

Figure 3.12: A schematic of the experimental setup for sending light to the ion in
lab 1. The first part is the PDH setup in figure 3.3.

3.2.1 Frequency drifts of the cavity

The ion was used to measure the frequency drifts of the cavity. The transition
5S1/2 ↔ 4D5/2 of the ion should in principle remain the same in time as long
as there are no drastic changes to the trap or the magnetic field experienced by
the ion (See section 2.1). The changes in the magnetic field can be monitored
by measurements on different Zeeman transitions. By making sure the trap
is stable and taking the magnetic field fluctuations into account the transition
5S1/2 ↔ 4D5/2 can be used as a reference when measuring the frequency drifts
of the cavity. The 674 laser II light was sent onto the ion using the setup
described above. By using an AOM to adjust the frequency of the light to
match the ion transition at different times, the drift of the cavity was measured.
Figure 3.13 shows the results. The slope corresponds to a frequency drift rate
of (306.9± 0.2) mHz/s.
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Figure 3.13: The frequency drift of the cavity measured using the ion transi-
tion 5S1/2 ↔ 4D5/2. The slope corresponds to the frequency drift rate is (306.9 ±
0.2) mHz/s.

3.2.2 Ramsey experiment

Coherence times for manipulation of ion qubits is limited by laser linewidth.
To characterise the coherence time using the 674 laser II and cavity II setup a
Ramsey experiment was performed. For the Ramsey experiment (for more infor-
mation see section 2.1.5) transitions 5S1/2(mJ = −1/2) ↔ 4D5/2(mJ = −5/2)
which is sensitive to the magnetic field strength and 5S1/2(mJ = −1/2) ↔
4D5/2(mJ = −3/2) which is less sensitive to the magnetic field strength were
used in order to distinguish between magnetic field fluctuations and laser fre-
quency fluctuations. As described in the master thesis of Anders Lindberg [8]),
the contrast decay will follow different distributions depending on the type of
noise that causes the decoherence of the system. In this case the data plotted
in figure 3.14 does not really fit an exponential decay. Instead, a Gaussian func-
tion y = Ae−t

2/2τ2

was used to fit the data where τ is the coherence time. The
measurements was done both with the line trigger and without the line trigger
for comparison. The line trigger triggers the experiment on the line of the mains
electricity, in order to reduce the oscillating B-field at the ion position caused
by the oscillating current at the mains frequency (50Hz) from the appliances in
the lab. The results of the experiment and the fits are plotted in figure 3.14.

33



0 250 500 750 1000 1250 1500 1750 2000
Ramsey wait time ( s)

0.2

0.4

0.6

0.8
Co

nt
ra

st

(a)

0 200 400 600 800 1000
Ramsey wait time ( s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
nt

ra
st

(b)

0 100 200 300 400 500
Ramsey wait time ( s)

0.2

0.4

0.6

0.8

1.0

Co
nt

ra
st

(c)

0 25 50 75 100 125 150 175 200
Ramsey wait time ( s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
nt

ra
st

(d)

Figure 3.14: The contrast of the Ramsey measurements fitted to a Gaussian function
of the less sensitive transition with line trigger (a), the sensitive transition with line
trigger (b), the less sensitive transition without line trigger (c) and finally the sensitive
transition without line trigger (d).

From the Gaussian fit the coherence times were determined and the results
are plotted in figure 3.15. The coherence times were τ = (990±60)µs for the less
sensitive transition with line trigger, τ = (500±10)µs for the sensitive transition
with the line trigger, τ = (263 ± 7) µs for the less sensitive transition without
line trigger and finally τ = (72 ± 3) µs for the sensitive transition without line
trigger.
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Figure 3.15: A comparison between the different coherence times for the sensitive
transition (blue) and the less sensitive transition (orange) for both with and without
the line trigger.

Comparing the results from figure 3.15 the coherence time for the transition
that is sensitive to the magnetic field strength is much shorter than the coherence
time for the transition that is less sensitive to the magnetic field strength. This
indicates that the sources of decoherence is not dominated by the laser frequency
fluctuations since the fluctuations should be the same for both transitions. This
suggests that the limiting factor for a longer coherence time at the moment is
the magnetic field fluctuations and not the laser frequency fluctuations. These
results are also very similar to previous results by Anders Lindberg [8] using
674 laser I.

3.2.3 Rabi oscillations

Figure 3.16 shows the Rabi oscillations for both the 674 laser II and the 674
laser I on the carrier and the blue sidebands for the 5S1/2(mJ = −1/2) ↔
4D5/2(mJ = −5/2) transition. The Lamb-Dicke parameter was calculated using
equation (2.12) and for the settings used in the experiment the Lamb-Dicke
parameter in the x-direction and in the y-direction are both η ≈ 0.04.
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Figure 3.16: Comparing Rabi oscillations for the 674 laser II and the 674 laser I, a
shows the Rabi oscillations on the carrier for 674 laser I, b shows the Rabi oscillations
on the blue sideband for 674 laser I, c shows the Rabi oscillations on the carrier for
674 laser II and d shows the Rabi oscillations on the blue sideband for 674 laser II.

From the Rabi oscillations in figure 3.16 the coherence time could be deter-
mined. Figure 3.17 shows a comparison of the different coherence times for the
carrier and blue sideband for both lasers.
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Figure 3.17: A comparison between the different coherence times for the 674 laser I
(green) and the 674 laser II (red) for both the carrier and the blue sideband.

The coherence time for the respective cases are listed below.

� 674 laser I carrier coherence time (610± 50) µs

� 674 laser I blue sideband coherence time (370± 30) µs

� 674 laser II carrier coherence time (1, 050± 90) µs

� 674 laser II blue sideband coherence time (520± 50) µs

The results show that the 674 laser II increased the coherence time compared
to the 674 laser I. The coherence time for the 674 laser I is limited by its servo
bumps, which could be a reason for the longer coherence time of the 674 laser
II since the servo bumps of 674 laser II due to the intra cavity EOM should be
at higher frequency and lower amplitude. This will open up new measurement
possibilities since the servo bumps of 674 laser I has been a limiting factor.

3.2.4 Comparing the coherence times

Figure 3.18 shows the comparison between coherence time of the transition
5S1/2(mJ = −1/2)↔ 4D5/2(mJ = −5/2) for both the Ramsey experiment and
the Rabi oscillations. As shown in the figure there is a large discrepancy between
the results, the coherence time for the Ramsey experiment is τ = (72 ± 3) µs
compared to τ = (1050 ± 90) µs for the Rabi oscillations. Both measurements
should give roughly the same result since it measures the coherence time for
the same transition and the difference in measurement technique should not
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affect the coherence time in this case. The cause of this discrepancy is still
not understood. The initial investigations of possible causes including problems
with the AOMs and the 674 nm laser beams have not revealed the answer.
It is possible that the magnetic field fluctuations are averaged out by Rabi
oscillations. Further investigations are needed, but this lies beyond the scope of
this thesis.
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Figure 3.18: A comparison between the coherence time of the transition 5S1/2(mJ =
−1/2) ↔ 4D5/2(mJ = −5/2) for both the Ramsey experiment (blue) and the Rabi
oscillations (red).
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Chapter 4

Summary and outlook

4.1 Summary

A stable frequency of the 674 nm qubit laser is essential in order to obtain long
coherence times. Longer coherence times will allow high fidelity qubit opera-
tions on 88Sr+. The frequency stability of the 674 nm laser was achieved using
the PDH technique to lock the laser frequency on a high finesse cavity. The
finesse of the cavity was measured to be F = (40, 000± 1000) which was signifi-
cantly lower than the finesse of > 200, 000 specified by the company. The cavity
linewidth was measured to be ∆νc = (30, 700 ± 800) Hz, the zero-expansion-
point, the free spectral range and the frequency drifts of the cavity were also
measured. By using a beat note between the 674 laser II and the 674 laser I
the upper bound of the linewidth of the laser was measured to be (123± 6) Hz,
which is likely broader than the actual linewidth since the light from the old
laser travels through a 10 m fiber from the other lab and fiber noise is typically
on this order of magnitude.

A Ramsey experiment on the ion was performed using the new stabilised
laser setup, as well as Rabi oscillations with both the 674 laser II and the 674
laser I. The coherence time without line trigger measured in the Ramsey ex-
periment and the coherence time measured with the Rabi oscillations are very
different from one another. The Ramsey experiment gives a coherence time of
τ = (72 ± 3) µs compared to τ = (1050 ± 90)µs for the Rabi oscillations, sug-
gesting that there is something wrong in the setup of the Ramsey experiment.
This needs to be understood. So far the initial investigations of possible causes
including problems with the AOMs and the 674 nm laser beams have not re-
vealed the answer. Further investigating the cause of the error lies beyond the
scope of this thesis.
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4.2 Outlook

The cavity finesse was much lower than specified by the company. Therefore the
cavity will be sent back to the company for cleaning to increase the reflectivity
of the mirrors. Cavity I is in a temperature and vibration controlled box, so in
order to stabilise the temperature and reduce the vibrations of cavity II it could
be put in a box similar to the one used for cavity I. The 674 laser II and cavity
is part of a new ion trap setup, when writing this thesis the ion trap is yet to
be designed. But as shown in this thesis, it can also be used for measurements
using the existing trap setup. As shown in this thesis the contrast decay of the
Rabi oscillations of the 674 laser II is slightly longer than for the 674 laser I
which open up new measurement possibilities on the ion. The 674 laser II with
its intra-cavity EOM enables reduction of servo bumps, for some experiments
the servo bumps of 674 laser I has been a limiting factor, so possible future
experiments using the 674 laser II will improve these measurements and the
ability to manipulate and control the ion.
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Appendices

A Settting up temperature control system for
the cavity

The cavity was connected to a Peltier element and two temperature sensors
(NTC thermistors) inside the vacuum chamber, these were connected to a tem-
perature controller (SRS PTC10) using a foil-shielded twisted pair cable to
reduce noise and cross-talk between the cables. The Peltier element was con-
nected to a TEC driver card in the temperature controller using a pin connector
(See figure A.1). One of the temperature sensors (NTC 1) was connected to a
PTC 320 card in the temperature controller using another type of connector
(See figure A.2). While the other sensor is not connected to anything perma-
nently at the moment, but can be used for an out-of-loop temperature readout.
A schematic of the cavity connector is shown in figure A.3.
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Figure A.1: A schematic of the connector used to connect the Peltier element to the
TEC card. Where pin 1 and pin 2 is connected to pin 2 of the cavity connector, pin 3
and pin 4 is connected to pin 5 of the cavity connector and pin 5 is connected to the
shielding. The rest of the pins are unconnected.
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Figure A.2: A schematic of the connector used to NTC 1 to the PTC320 card. Where
pin 1 and pin 2 is connected to pin 3 of the cavity connector, pin 3 is unconnected
and pin 4 and pin 5 is connected to pin 1 of the cavity connector.
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Figure A.3: A schematic of the connector used to connected to the cavity. Where
pin 2 and pin 5 is connected the Peltier element, pin 1 and pin 3 is connected to NTC
1 and pin 4 and pin 6 is connected to NTC 2.
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